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A topological approach and understanding to the detection of unstable periodic orbits based on a recently
proposed methofPhys. Rev. Lett78, 4733(1997] is developed. This approach provides a classification of
the set of transformations necessary for finding the orbits. Applications to the Ikeda ‘auch IHeap are
performed, allowing a study of the distributions of Lyapunov exponents for high periods. In particular, the
properties of the least unstable orbits up to period 36 are investigated and discussed.

PACS numbegs): 05.45—a

[. INTRODUCTION exponential proliferation of the number of cycles with in-
creasing period and their increasing instability fully cha-
Unstable periodic orbitUPQ’s) represent a skeleton of otic systems Specifically the modified Newton-Raphson
complex chaotic systems and allow the calculation of manynethod is an all-purpose method, which does not require a
characteristic quantities of the underlying dynamics likespecial form of the underlying equations of motion. How-
Lyapunov exponents, fractal dimensions, and entropies ofver, it needs a good initial guess for the starting points.
the attractord1,2]. For dissipative systems expansions in Therefore this algorithm rapidly becomes expensive and is
terms of periodic orbits are well established in the literaturdimited to relatively short periods and low-dimensional sys-
[1,3-6 and demonstrate the relevance of the cycles for untems. A variety of other methods have been developed which
derstanding chaotic dynamics. Both low-dimensional modefocus either on time series analysis or on finding UPO'’s for
systems such as discrete m@ps2] as well as experimental given equations of motion§2,4,14,19-21 For a special
time seried7—10] have been studied. Furthermore the serieslass of systems, a numerical technique for calculating arbi-
expansion of semiclassical properties of classically chaotitrarily long UPQO’s to any desired accuracy was introduced in
Hamiltonian systems, with respect to the length and stabilityref. [21] for the Hanon map[22] and later applied to a few
coefficients of the periodic orbits, is a fruitful and frequently other dynamical systenjd5,23,24. This method allows the
applied technique: it allows the investigation of the energysystematic computation of all UPO’s of any given order,
level density as well as other quantum propertie§. Much  each given by a unique binary symbol sequence.
has been added to the importance of the UPO’s by using Recently, we proposed an alternative metliiodthe fol-
them to control chaotic dynamical systefsse Ref[12] and  lowing referred to as SD methpdor the calculation of
references therejin UPQ’s[25]. The basic idea is to transform the fully chaotic
More recently, cycle expansion techniques have been insystem to a new dynamical system with the periodic orbits
vented and shown to converge well, especially when théeeping their positions but changing their stability proper-
symbolic dynamics is well understodd,13]. Series expan- ties: For a particular transformed system a certain fraction of
sions over periodic orbits used for calculating dynamical avthe periodic cycles becomes stable and can be found by sim-
erages are typically ordered according to the orbit length ply iterating the transformed system. This fraction depends
[1,13-19. Drawbacks of these expansions are the largen a tuning parameter that represents an upper stability cut-
number of orbits(increasing exponentially witlp), the re-  off for the fixed pointgFP’s) to be detected. In the following
quired completeness of the set of cycles for a given periodwe will use the term “stabilization” and “stabilized fixed
and the slow convergen¢#4,15. A promising proposal was points” for the process and fact, respectively, that the un-
made[16,17] stating that series expansions could convergestable FP’s of the original chaotic dynamical system have
better if they are truncated according to the stability of thebecome stable in the corresponding transformed system. The
orbits[18]. What is more, stability ordering does not rely on reader is kindly asked to distinguish this use of the term
the knowledge of the systems symbolic dynamics, which is‘stabilization” from the one used in control theory of chaos
unknown for generic dynamical systems. via unstable periodic orbits. According to the above the SD
Chaotic dynamics is intrinsic for many physical systems,method allows us the systematic calculation of the least un-
which is why periodic orbit theory is not restricted to specific stable periodic orbits of any given ordpr[26]. The latter
areas of physics. Much effort has been spent on developingossibility meets the requirements of the series expansions
efficient techniques for calculating UPO’s of a given dy- using stability ordering, since they allow to derive properties
namical system. What makes this quest so difficult is theof a physical system by exploring only the least unstable
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period orbits up to a given stability cutoff. The technique of TABLE I. Multiplication table for the matrice€,,, .
the SD method is highly flexible and can be applied in &
straightforward manner to a great variety of discrete dynami- - Cor Civ Cow Cgp Coo Cpo Cpo Cao

cal systems of any dimension. Continuous dynamical sysg c c c c c c c c
tems can thereby be treated using properly chosen Poincaeé’+ CO* C“ C“ C?’* CO’ Cl’ CZ’ C?”
; ; ; 1+ 1+ 2+ 3+ 0+ 3— 0-— 1- 2—

surfaces of section. Therefore, it might open the way forC c c c c c c c c
employing the proposal of Reflsl6,17 for a great variety of 72+ 2+ 3+ o+ 1t 2- 3 0~ -
dynamical systems. 3+ Car Cor G G G G Goo Goo

The present work has a twofold purpose. The first goal i€o- Co- Cio G Coo Cor Cip Cor Gy
to enhance our understanding of and give insights into thé1- Ci- Co- Cio Coo Cap Coy Ciw Cou
SD method. To that end we provide a complete classificatioffz- C2- Cs-  Co- Cio Co Car Cou Gy
of the involved transformations. As a result we gain both€s- Cs- Co- Cio Co Cyp G G Coy
topological as well as geometrical understanding and inter=
pretation of the transformations. Corresponding invariant
structures are thereby revealed and the FP’s can be classifi&®(\;) <0 for continuous systems)\;|<1 for discrete sys-
similarly to the stabilizing transformations. This opens thetems, with eigenvalues;] and can therefore be detected by
future perspective to selectively detect UPQO’s not “only” simply iterating properly chosen starting points of the trans-
with respects to their stability but also with respect to certairformed systens,, .. For eachS,. . a different set of FP’s
desired geometrical properties. We will thereby learn howof U is stabilized. Let us denote Hy,;, the minimal set of
simple global operations on the dynamical system change theairs (ko) with the property that there exists for each un-
stability properties of fixed points. The second purpose oftable FP«, at least one pairl’ ') € | ,;, for which S/ ./
this work is to elucidate and extend the work in H@6]. To  transformse,, into a stable FRy,. This set holds for arbi-
this end we provide extensive results of applications of outrary periodp. The search for the FP’s & is then straight-
approach to the Ikedf28] and Hewon [22] maps. For the forward: A starting point chosen in the global neighborhood
Ikeda map, we calculate the complete sets of FP’s for period&ee below of the FP«,, iterated with the transformed dy-
up top=15. The number of orbits is large enough to inves-namical systenS,,,.,(k'¢’) el i, converges, due to the
tigate the distribution of Lyapunov exponents. This distribu-stability of a, to the position ofeg which is equal to that
tion is compared with the corresponding one of thenéte  of «,,.
map according to Ref21]. Next the algorithm of Ref26] Propagating a sefx;} of starting points and using all
to determine the least unstable orbits is slightly modified andko) e I .,;, we end up with a set of FP &f whose complete-
applied to the Ikeda and Hen map. The ten most stable ness can be ensured by successively enlarging thérget
orbits of a given length up to perigp=36 are studied for Let us now specify the systen®,, :
both maps. Their Lyapunov exponents vary in a characteris- )
tic way as a function of the period. g Sko Xi+ 17X+ AygLF(X) =] 1)

In detail we proceed as follows: In Sec. Il A we briefly
review the SD method for finding UPQO’s as described in RefSy,, are linear transformations of the original dynamical law
[25]. The topological/geometrical classification and geo-U. Ay, are invertible constarmt X n matrices. The definition
metrical extension is presented and discussed in Sec. I B. laf S, andU clearly shows that their FP’s are one to one and
Sec. Il A we show the results of complete sets of orbits ancat the same positions. Equatidft) implies the following
we present and analyze the distribution of Lyapunov exporelation for the stability matrice$, andTs of U andS,,,
nents in Sec. Il1 B. The extended method to stabilize the leasiespectively,
unstable cycles is given in Sec. Il C together with the cor-
responding results for the Hen and Ikeda map. Section IV Ts, =1+ Ao(Ty—1). )
concludes with a summary. 7

In Ref.[25] it was shown thaiA,, can be cast in the form
Ay=\-Cy, with 0<A<1. The set of matrice$Cy,} con-
tains all orthogonal matrices with only one nonvanishing en-
A. Brief review of the underlying method try =1 per row or column, i.e., they represent a group of

In order to be self-contained and for our further theoreti—SpeC'_aLreﬂg.Ct'c;ns ;nd perm?tt:;l]tlons. trix determinant. and
cal investigation we recall in the following the key ideas of, ¢~ — Indicates the sign ot the matrix determinant,
the method developed in RéB5] to detect UPO's. Consider is an additional label to uniquely specify the matrices. In two

Il. THEORY OF THE STABILIZATION
OF FIXED POINTS

a discrete chaotic dynamical systdsnx; , ;="f(x;) in n di- dlm_elns(;ons we han:(”O: _1CZ+:(5 D, Co-=-Cp
mensions. The FP’s of thpth iteratef(P are points of the :(8 1_)1’ Cp=—Cs:=(2y 0) and Cp =-Cs
UPO’s of periodp. To find the FP's ofU the following =(Z1 o ). The matrices{Cy,|lk=0...3,0==} form a
strategy is employed: A set of transformations is specifiedoup with{C,.|k=0, . ..,3 (matrices with positive deter-

which transformdJ into new dynamical systen{s§,,} with ~ minany being a subgroup of order 4. Table | is the corre-
the FP's keeping their original locations in spacEhe set ~Sponding multiplication table. Obviously, the product of two
{S,} is chosen such that for each unstabledzfof U, there ~ Matrices is

exists a specific transformed systeSp . of the set{S,,}

for which this FP has become dissipatively stabie., Curo7=Cxo Crr g
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with B. Geometrical interpretation of the stabilizing transformations
Sko'
kK'=k'+o"k mod 4 1. Classification scheme
The stability properties of the FP’s of the dynamical sys-
temsS,, have been investigated in R¢25] exclusively in
the context of their relation to the stability coefficients of the
0o =00". 3 original systemU. To gain a deeper insight into the geo-
metrical meaning and the interpretation of the transforma-

The notation introduced above is different from the one usedions S, , which turn unstable FP into stable ones, one has
in Ref.[25] and will reveal its meaning in the course of the to go beyond the pure consideration of their eigenvalues at
classification of all possible FP'®ccurring in the original the positions of the FP’s.

and transformed systemas provided later on. The arith-  In the following we develop a geometrical approach al-
metic with respect to the first indeskk’,k”, . ..) has al- lowing us to classify the FP’s which are stabilized by differ-
ways to be taken modulo 4. We remark that the minimal se€nt matrice<C,,. We will hereby focus on systems with two
Imin is Significanﬂy Sma”er than the set Of pa"lwo be|ong- degreeS of freedom. EXpeCtedly there Shou-ld, hOWeVer, .be no
ing to the matrice§S,,}. Given a certain unstable R, the ~ major o_bstacles with respect to the generallzatmn to arb|_trary
above choice of linear transformations represented by the séimensions. When dealing with the stability transformations
{Cy,} of matrices allows us to find a particul@ . such the natural problem arises: Restricting ourselve§ to the set of
that the real parts of the eigenvalues@f,.(T,—1) are orthog.onaCkU matrices with exactly one nonvam_shmg entry
negative at the position of the FP. As a consequésee Eq. (i 1) in each row and column and to the Imearlzeq dynam-
(2)], if X is chosen sufficiently small, the magnitude of theiCS around a FP, what can we say about the action of the
real parts of the eigenvalues of the BRin the transformed ~MatricesCy, [see Eq(1)] on this simple dynamical system?
system are smaller than one, and we therefore encounter @ @pproach this problem consider the following set of equa-
stable FP that can be detected as described above. The cri#Qns:

cal value of\, which just suffices to make the FP stable, can
immediately be read off from the quadratic equations relat-
ing the stability coefficients of the original systeth and
those of the transformed syste®y, [25]. The above proce-
dure can easily be extended to higher iteréf®@¢x) of U [by

and

x=F(x), FxX)=fV(x)—x, F(X)=(F(x),F2(x))T,
(4)

which describes a vector field around the FP locatexk at
iy
; (D) : . where F(x;) =0 (the superscript denotes the transposed
giggcéng;c\lg;hoffu in Eq. (1)] allowing us to determine all In the following sections we generally focus on the discus-
The advantage of the SD method is clearly its global char-i1 |on| Oiﬁgetrzzz;g?z(aﬁ%’numess noted differently. Now we
acter in the sense that even points far from the linear neig PPl
borhood of a FP are attracted close to the FP after a finite T
. . . =Fio(X)=Cys-F(X), Fro(X)=(Fge1(X),Frso(X))".
number of iterations of the transformed dynamical law. The k()= Cieor FO), - Fir ()= (Frga(X), P 2)) ®)

basin of attraction of a single stabilized FP is a simply con-

nected area in phase_space. The typical_number of starting s important to note that the dynamical syst&p, in Eq.
points needed to obtain the UPO’s of a given length on thg1) represents a discretization of the continuous system, Eq.
attractor is only slightly more than the expected number of(5)_ Multiplication with C,, intermingles thex andy coordi-
cycle points themselves. _ _ nates ofF(x), which in general changes the eigenvalues and
The parametex is a key quantity here. It is related to the gjgenvectors of the corresponding stability matrix. One di-
;tabll|ty of the (_jeswed cycle in the transformed system. With,action of the above problem is: Are there any points in the
increasing period of the cycles, has to be reduced t0 pejghporhood ofx; where this change of the dynamics is

achieve stabilization of all FP’s. One may, however, also b&gnirollable? In fact let us consider the manifolts Z,, de-
interested in the most stable periodic orbits of a given periogjeq by[27]

p [26] which is one of the key issues of the present work. In

this context\ operates as a filter allowing the selective sta- Z={x|F(x)=0}, i=1,2. (6)
bilization of only those UPQO'’s that possess Lyapunov expo-

nents smaller than a critical value. Therefore, by starting the In the linear neighborhood of; these sets clearly define
search for UPO’s within a certain perigdwith a value\ straight lines. In the more general case of a nonlinear system
=0(10"1) and gradually lowering. we obtain the sequence they are implicitly defined continuous curves in an area of
of all unstable orbits of ordgw sorted with increasing values phase space where the Jacobian of the map is regular. Their
of their Lyapunov exponents. In RéR6] it was shown that intersection isZ,NZ,={x;}. With C,, acting onZ;,Z,,

for the specific choice o) =(0+) ey, the relation be- they either stay the same &,, does not interchange the
tween\ and the stability coefficients of the FP’s of the origi- coordinates, or they are transferred one onto the oth@y,if

nal systemU is a strict monotonous one. Transformed dy-does interchange the coordinates. In this sense, the manifold
namical systemsS,, belonging to other pairsk(o’)# (0 Z=7,UZ, is invariant with respect to application of the set
+) do not obey such a strict behavior but show a roughof matricesC,,,, i.e., Cy,(Z)=Z for all (ko).

ordering of the sequence of stability eigenvalues of the FP’s In the following we derive a classification scheme for the
of U stabilized in the course of decreasing valuesNor linearized dynamics around a FP whose validity is, however,
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due to the global character of our approach, not limited to the TABLE Il. Transition matricesCy, necessary for transitions
linear regime. In order to elucidate the action of the stabiliz-between different classes,, of stability matrices of fixed points.
ing transformations and to distinguish between FP’s withThe first three columns indicate the combination of classes occur-
different stability properties, let us introduce two different fing in a two-dimensional chaotic dynamical system.
ways of classifying the matrices of a two-dimensional dy-—"————
namical system, each providing its own insights. The classi¢” €7 C° /1 Aor Ane Ay Az Ao- A A As-
fications are such that they reflect certain geometrical fea- Ag: Co. Cis Cpi Csi Co. C,. C,. Cs
tures of the flow around the FP. These features are the * A, Cas Cos Cii Cpo Cp. Cp. Cs Co
different invariant set&Z on the one hand and additional , . . Ay, Cp. Csr Cyi Ci Cp. Cs Co. C
geometrical properties of the matrices, which have a particu- o P
lar Z in common, on the other hand. e e A3+ CH CZ* CP’* co* 03’ CO’ Cl’ (327
The first classification introduces classes consisting of , AOi CO’ Cl’ CZ’ 037 CO* C“ CZ* C3*
matrices which have the manifold=2Z,UZ, in common. Ali Cli C27 C37 CO’ 03* CO+ CH C2+
They are labeled(min ,Pmay), Wheredmin and ¢, are the . . AZ_ Cz‘ C3_ CO_ Cl‘ C“ C3+ C0+ CH
azimuthal angles of the manifolds, andZ,, respectively, 8- 8- MO- Mlm 2m MIE 2w MsE MO
being sorted with increasing ordeb,, and ¢, are related
to the stability matrix of the FP in the following way: The
linearized dynamics of Eq4) in the neighborhood of a FP each (7) we thereby form a class{;,={C|  bmin,Pma|0
readsx=B-x, WhereB=(aij)%s@s§ is the stability matrix of <h¢min, l:naxj:zw}- Forf fixed d’min,(ﬁmlaxt, fTS‘g‘l“tiP”tcationt:y
i isj= . the matriceC,, transfers one complete sdi . into another
F(x) at the FP and is the displacement with respect to the ge¢ 4., The corresponding transitions are given in Table
FP. It can be shown that,, and ¢ ., are given by Il. The asterisks in the first three columns of Table Il indicate
(Dmin» Pmad = (Min{ e}, max ¢;}) the s«=_:tsCi a_ndA,T to vv_hich stability matrices of a F_P of a
[ [ two-dimensional chaotic system can belong. This is of rel-
, evance when asking for the possible sets of matricgs
with which stabilize all FPs of a dynamical systdsee below.
aj; ' As one can read off Table Il, the matr®,, necessary to
i =arctar( - —) i=1,2. (7)  transfer stability matrices of a clas$, into matrices in an-
12 other classA,. .. is given by

If a stability matrix B belongs to the clasS(@min,Pmay itS

products{C,,- B} also belong to this class. Crw i A Ay
For the later discussion we introduce here three sets of

FP’'s each of which is an infinite unification of classes

C(DminPmax): with
ct= {C( Drmin s Pmax) | 0< Pmins Pmax< 77/2},

CZ:{C( ¢mina¢max)|o< Pmin<T2< Ppmax< T}, )
c3= {C( Drmins Pmax) | TI2< Pmin, Pmax< 77}-

A further classification of the matrices within each class

C(bmin Pmay 1S Needed for a more detailed identification of =0T (9)
the geometrical properties of the flux around a particular FP.

For this purpose, we assign a labék) to each stability

matrix B, of FP’s with the following meaningr= =1 gives It is important to note that Table Il holds not only for the
the sign of det,,). To illustrate the meaning df we write  unified setsA,, but particularly also for the individual sub-
F(x)=(r cosy;r sing)" in polar coordinates and consider the setsC,.( min,Pmay)- It is @ remarkable result that the multi-
azimuthal anglef,i, of F(x) for x=(coS¢min,SiNdmin)'- By  plication table of the matrice€,, , i.e., Table I, considered
construction,¢,;, can take the valuesiw/2, m=0,...,3. as a transition table, has the same entries as the transition
Now we define the indek=m+ 7—1 mod 4. Encircling the Table Il. The multiplication law Eq(3) becomes a law for
FP on a unit circlex=(cos¢,sing)’, the normalized flux the transition ofC,, to Cy»,~ via Cy/,+ With the correspond-
F(x)/|F(x)| describes a circle in the local coordinate systeming indicesk’ =k” — oc”k ando’ = oo”. This suggests that
centered inx, too. 7 gives the orientation of this circular the matrices in a clasd,, are in a way similar to the matri-
rotation of the flux ¢= +1: anticlockwise,7=—1: clock-  cesC,, with k=I| ando= 7 as far as the rules for multipli-
wise), wheread is directly related to the phase of the flux at cation with the matrice€,,, are concerned.

G min- This naturally introduces a subsét.(dmin,®@mad Of The clas<) ( Pmin,Pmay Still contains an infinite number
the clasC(@dmin:Pmay: those elements af( dmin,Pmax) De-  of (stability) matrices. However, to gain relevant information
long t0 C; (@ min.Pmax, Which possess the indicebrf, i.e.,  on the stability properties of FP’s it suffices, as we shall see
the signr for the rotation of the flux and the phakef the in the following, to know to which of the set§C'|i
flux at ¢min. We can now allowg i ,dmax t0 vary while =1 ... 3} and additionally4, . the stability matrix of the FP
keeping the indicesl ¢) of the matrices of this set fixed. For corresponds.

|"=k+ o mod4

and
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2. Properties of the angular functionsf(¢) of the flux
and examples

Let us consider an arbitrary but fixed stability matrix
B, € C(Pmin Pmay: Bi-€A ., and form the matrices
Cys-Bi;, k=0,...,30==1. Each of these matrices is el-
ement, i.e., representative of a different clags, and we
therefore have

Bi - =CyxsBir
with
["=k+ ol mod 4
and
=0l (10
In the following we will call the set{B,||=0,...,37

=+ 1} the family of the matrixB,,. A central issue is to
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v

Fixed
point

FIG. 1. Definition of the polar angleg and ¢,...(¢) of the
displacemeni= (cos¢,sin¢)" relative to the FP at (0,0) and the
flux Fy,(x)=(costj . ,sinyi,)". (ko) indicates the particular sta-
bility transformation applied according to E@5). The indices
(I"7") are given by Eq(9) using ko) and the indicesl) of the
class.4,, to which the stability matrix of the original FP belongs.

W T(¢):ar0taﬂ(—)2 + | 5 —sgn(By,- X)z)
(B X)1

= arctar(

3
= —signby? cos¢p+ by sin ¢)) . (1D

bl cosep+ bl sing
b{? cosp+b{? sing

+

(@) is the azimuthal angle of the flugiven by F, . (x)]
with respect to a local polar coordinate system centered at

analyze which members of the family of a FP are stablethe displacement=(cos¢,sin¢)". This is illustrated in Fig.
Once the information on the stability of the members of al. Let us derive relevant properties of the angular flux func-
family becomes available this represents an important stefons ¢, (¢). #,.(¢) is a continuous function otp with

toward the selective use of E€L), i.e., the selective detec-
tion of FP’s.

1. () €[0,27r]. Due to symmetry reasons it is sufficient to
consider the range<Q <. Furthermore), .(¢) is defined

In the following we study the orientational properties of mod2z and ;,(0)— ()= . Its derivative reads

the flux for a family of stability matrices with fixed but ar-
bitrary (¢min.dmad. FOr the matricesBy,= (b{|”)

eA,T we introduce the angular functionfg () of the flux
x=B,,-X at a pointx=(cose¢,sin¢)"

IX|=

Li(#)=

being the “velocity” of the flux inx. Since multiplication
with any C,, affects complete rows d8, . by interchanging

sy =SB (12
1=i,j<2 Ir L|27(¢) ,
with
|
\/(b('T) cosg+ b(' 7 sin ¢)°+ (b(I 7) CcoS¢p+ b('T) sing)? (13
I
which yields
the ()= 29 (bmin) — - D), (16)

them or inverting their signstT((;S) is invariant, i.e.,
same for any of the resulting matric&,_.. Two functions
(@) and ¢, (p) therefore differ only by a shifty, ()
= (p)=(—1"mod4) =/2. | can be interpretedsee

also Sec. II B as the phase of the linearized flux around the

FP

(14

o
'lflr(d’min):(l +1-1)- E

Accordingly we have de,,-B)=det(Cy,)-det(B), with
det(Cy.)=+1 and detC,_)=—1 and therefore

lr/,(‘r( d)) = wllf T( (;b) ’ (15)

where 7= *1 indicates the sign of deB({,) and determines
whethery, () is rising or falling, according to Eq12).

In the remaining part of this subsection we provide ge-
neric examples and illustrations of the lineazised dynamics
around a FP and the corresponding angular functions of the
flux for the different elements of a famil§B, .}.

The stability matrice®,, in Figs. 2a) and 3a) are mem-
bers of a family of the matriM,=(,5 ~2), corresponding
to the clas€’(0.24,1.10). Figures(4) and 5a) are obtained
in the same way, showing the family bf,= (3, £*), which
is in the clas<’(0.24,2.03). Each subfigure shows the linear
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b)
\Pl‘t(q)) B, \Pl‘;(q)) 2
3w el 32m
P T 24 1%
/'/ B, '\t‘,
P ' — T
] ‘,/’_ 0
/) il ) +
2 T
/ | i
/
0 0 /I /ZBSJr 0 0 5/2
¢mm ¢mxﬂ ¢ " q)m.in q)ma": q) K

FIG. 2. (a) Phase portraits of fixed points with dB{()>0,0< ¢min, Pmax<7/2. (b) and(c) are the corresponding; ,(¢) diagrams. In
(a) the manifoldsZ,,Z, (long dashed lines eigenvectorglines with filled arrow$, and some trajectories are shown. The areas shaded gray
indicate the intervals of the locations of the eigenvectors. They correspond to the shaded boxes in(djaghéch show these intervals for
the four FPs discussed.

neighborhood of the corresponding FR,) are the coordi-  (For saddle pointsy,v, are indicated by outward and in-
nates of the displacement of a trajectory with respect to thyard looking arrows corresponding to the expanding and
FP. The manifold<,,Z, are displayed as long dashed lines contracting manifolds, respectively. For sinks and sources

with the direction of the flux on th&,, Z, lines being in- the correspondina eigenvectors are labeied o... and
dicated with open arrows. The thick lines with filled arrows ¢ CCrTesPonding €ig eled ve 2,

show the position and stability properties of the eigenvectorsVc,1:Vc,2, fespectively. Additionally, some trajectories have
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2 P /2
\ 5 - .
\ o 2} =
\
0 0 /2\ 0 0 /2
b T T T
q)min ¢max q) ¢ ) q) ¢

FIG. 3. Same as Fig. 2, but with d&() <0, 0< dnin, Pmax<7/2.

been included to visualize the direction of the flow aroundwhose phase portraits and functioris.(¢) look different
the FP. In Figs. )—5(b) the corresponding angular func- from those displayed in the figures. However, the functions
tions ¢, (¢) are plotted. It is important to note that these ¢, (¢) of all these matrices I€( P min, Pmad N A, have the
particular functions—as well as the phase portraits given irvalues of ¢ () in ¢= din and ¢= ¢da and the sign of
the corresponding figures—are merely examples to demong’(¢),. in common. The actuap,.(¢) can vary inbetween
strate the qualitative variation of the dynamics generated bgccording to the definition Eq11). Nevertheless the above
members of a family of stability matrices. There exist ininformation about the stability matrices is in fact sufficient to
general other families in the same cl@&)min, dmad DAl - determine their stability properties.
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FIG. 4. Same as Fig. 2, but with dBj()>0, 0<¢,in<72< dmax-

Now, looking at the examples in Figs(e&2-5(@ except  F(x) is collinear with the position vectar=(cos¢,sing)",

for the cases of spiral poin&,; , andBg;, , we are already in i.e.,F(x)=*c-x, ¢>0. These angleg, obviously are the

the position to suggest a criterion for the stability and thepolar angles of the eigenvectors of the corresponding stabil-
approximate position of the eigenvectors of the FP. Consideity matrix. The intervals where these anglés are located

the direction of the flux in each of the sectors which areare bounded by; andZ,. The manifoldsZ, andZ, repre-
determined by the manifoldg; ,Z, and the coordinate axes. sent the boundaries of sectors in which the angle of the flux
The manifoldsZ,,Z, are by definition the lines for which the varies by#x/2. For reasons of continuity af, ,(¢) [see Figs.
first, respectively, second component of the flux vanishes2(a)— 5(a)] one or even two eigenvectors are located within
Since the fluxF(x) is a continuous vector function of the these sectors, which are shaded gray in the figures. In spe-
angle ¢ there have to be certain valugg for which the flux  cific cases parts of the sectors defined Dy and Z, are
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FIG. 5. Same as Fig. 2, but
with  det(B,,) <0,0< ¢ppin<m/2
<¢max-
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excluded for the localization of the eigenvectors since col- 3. Stability properties of the classes and the alternative sets
linearity of x and F(x) is not possible. In these cases the of stabilization transformations

outer coordinate systenx(y) repregents_ the boundary of the  \we will show in the following that for fixede,,, and
sectors for the occurrence of collinearity. . bmax tWo complete classes!, ., and A, ., are related to
The fact thatp, is the polar angle of an eigenvector of the stable FP’s, i.e., the matrices in these classes have eigenval-
stability matrixA is equivalent to uesh,\, for which Re{\;),Re(\,)<0 holds. To these two
classes correspond two matric€, and Cy,» which
transfer an original stability matrix in a clas$;, into the

P (bo)= ¢e:REN)>0, unstable. elgenvector desired stable matrices i, .» and.A»». This corresponds
¢t mRE(N)<0, stable eigenvector. to a transformation of the original FP into the desired stable
(17 ones in the transformed dynamical syste®ps,: and Sy, .
The two matricesCy/,» and Cy»,» which accomplish this
. . . transformation can be read off the transition Table Il imme-
This means that a crossing ¢f.(#) with diately. In particular, it will become evident that a minimal
set of threeC,, matrices is sufficient to stabilize any FP of a
Xn(®)=¢+nm, n=0,1 (18 two-dimensional fully chaotic system. What is more, this

classification proves to be useful not only for saddle points

but also for systems with repellors and spiral points, which
indicates an unstable or stable eigenvector for the correzan be transformed to stable FRP&nks via a certain matrix
sponding value ofp, respectively. Cy, (see below.
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We now discuss the properties of all possible stabilityseen as a generalization of the criterion of the crossing with
matrices according to theif ,(¢) diagrams. To do thisitis y,(¢) in the case of real eigenvalues.
sufficient to consider the assignment of the matrices to the It is an interesting property that the stability of matrices
classes’!, C?, andC?® as introduced in Eq8) and to the B,, of a family {B,,/|=0...37==*} changes withl —I
classesA, . In the following we concentrate on the classes+2 mod4, i.e., ifB;, is stable, thefB;, is unstable, iB, .
¢! andC? since the argumentation for the clag$is analo- is stable, therB,. is unstable and vice versa. If the eigen-
gous to that forC. For the same reason we restricted thevalues are real the eigenvectors are not affected by the shift
examples in Figs. 2-5 to the class@$ and C?. In Figs.  (only their stability changésThis property is obvious taking
2(c)—5(c) we show the areas in thg ,(¢) diagrams where a into account that the shift i corresponds to a shift of
crossing ofi, (@) and xo(¢é) or x1(¢) may occur as gray ¢,,(¢) by m, with 7 also being the shift between the lines
shaded boxes. They are derived by simple application ofq(®),x1(¢). Physically, the shift byr is for any stability
continuity arguments concerning;.(¢). The labelsl7 in ~ matrix equivalent to a time reversahich corresponds to a
the boxes are the labels of the corresponding cldssof  reversal of the fluXF(x)— —F(x)].
matrices whose real eigenvectors have azimuthal angles in We now come back to the discussion of the stability prop-
this range of¢. Two labels given in brackets indicate the erties of matrice possessing a positive determinant.
possibility of either two real eigenvalues with eigenvectors MatricesBe{A,.|I=0 ... 3} describe sinks and sources
in this range(sink or sourcgor complex eigenvalues without and spiral points. First we will address the sinks and sources
real eigenvectors of the corresponding ma(sgiral pointg.  and second the spiral points. The corresponding curve
These two possibilities cannot be distinguished within oury;.(¢) crosses one of the linegy(¢) (sink) or x1(¢)
classification scheme of matrices. However, this fact doegsource twice. It is obvious but nevertheless important to
not affect the final selection of the minimal stabilising set of note that there cannot be more than two crossings, which can

matricesCy,, . also formally be seen from E@12). Having three or more
We begin our discussion with stability matricBswith cuts with xy,(¢), n=0,1 implies thaty,,(¢) has at least

negative determinants. two turning points in any interval ¢y, ®,] with ¢q— ¢,
Matrices Be{A,_|I=0...3} are stability matrices of = /2. This means that? (¢) has two or more extrema in

saddle points. The stability properties of these FP’s are eagy,¢,]. DifferentiatingLZ(¢) [see Eq.(13)] yields [for

to determine from the corresponding .(¢) diagrams in  the sake of simplicity we omit the superscripis) in the
Figs. 3b) and §b). It is obvious from the monotonicity and entries bl(Jl N, j=2 Of B]
continuity of they;.(#) curve that they intersect the “un- '
stable” and the “stable” linesyo(®), x1(&), respectively, — dL{()
exactly once. The sectors where the corresponding eigenvec- d¢
tors are localized are shaded gray in the corresponding phase
diagramgFigs. 3c) and 5c)]. X €0Sp+2(C0S p— Sir? ¢)(byibp+byby)
FP’s with positive JacobiaB are a bit more subtle mat- 2 L R2 k2 2
ter. They belong to the classgd,,|I=0 ... 3} and include = (b2t b1~ b3y = b1ysin(2¢)
sinks and sources as well as spiral points for which the real +2(cog ¢— Sir? ¢)(byybyo+bybi)cog26),
part of the stability eigenvalues Ref). Re(\,) possess the

= —(b3,+b%,)2 cosg sing+ (b3,+b?,)2 sing

same signs. Spiral FP’s possess stability matriBewith (22)
eigenvalues Imx,),Im(X\,) #0. This implies detB)>0. As dL2 () b-bort beb
pointed out earlier the classification of the stability matrices I~ _Oetan2¢)= ——22 2 oy

with C(bmin.dmay and.A,, neither specifies the matrix nor its de b3,+b%,—b3,— b2,

eigenvalues completely. In particular for stability matrices

whose family contains spiral points an additional criterion iswhich has exactly one solution fosp in any interval

needed to analyze their stability since the correspondingq.o,] With ¢4— ¢d,= /2, i.e., there is only one turning

() functions do not cross the lingg(¢) or x1(¢). For  pointin this interval.

this analysis we suggest the following criterigmhose com- (@) The classC': As can be read off directly from the

pleteness we could not prove et diagrams[Figs. ab) and Zc)], matrices inC*NA,, and
Consider the angleg,, t=1,2, for which ¢ (¢,)=1, C'NA,_ are sinks and sources, respectively. One of the

i.e., 1.(¢) is tangential toy,(¢), and define the distance to eigenvectors is in the interv@lpin,dmaxl, the other one is

both linesy,(¢) located in[m/2,7]. Matrices of the clas'N.A4;, and
) CN A, are either sinks and sources or spiral points. For
dn= m"12| (p)—d—nm|, n=0,1. (19 real eigenvalues matrices 6f'N.A,., are sinks, whereas
t=1,

matrices inC*N Az, are sources. The orientation of the
eigenvectors of both stability matrices are within the interval
[ dmax,72]. Considering the latter case of spiral points, we

do<d;=Re(\)>0, unstable spiral point, (20) can at least state that within one fam{lg,,||=0...37=

+1} of matrices eitheB,, is a stable spiral anB3, is an

do>d;=Re\)<0, stable spiral point (21)  unstable spiral point or vice versa.

(b) The classC?: Here more cases are possible. Looking

This implies that for spiral FP's the ling,(#) which is at the matrices{B,,||=0...3} of the family {B,!

closest toy.(¢;) determines the stability and this can be =0 ...37==*} there can be

Now the stability of the spiral point is suggested by
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(1) no spiral point, but two sinks and two sourdesialo-  derived from the original dynamical systexn. ;=f(x;). In

gous toC); two dimensionsf(x) can have saddle points only and the
(2) two spiral points(one s’gab{e, one unstablene sink  Fp's of F(x) are therefore either saddle points also or sinks.
and one sourceanalogous to irC"); or Let us discuss the sék,qqe0f MatricesCy, which stabi-
(3) four spiral points(two stable, two unstable lize saddle points first. Since the determinant of the stability

Which of these cases occur is a question of the variation offatrix is negative for a saddle point and positive for any
() — ¢ and of the phase,,(dmi). If real eigenvalues Stable sink or spiral point, the corresponding stabilizing ma-
occur, the angles of the corresponding eigenvectors aréix Cy, has the formC,_. Since the saddle points of all
Within [ 7/2,¢ma] for matrices inA;, and A, . The posi-  classeC!, €2, andC? have to be stabilized b$saqqeWe
tion of eigenvectors of stability matrices j#;, and Az, is  have to determin&g,qqeSuch that any clasgl,_ of original
not determined within this classification scheme. matrices is transferred into at least one element in each of the
To determine the minimal set§ of matricesC,,, neces-  pairs
sary for stabilization oéll FP’s of a two-dimensional chaotic (1+,2+) or (2+,3+) or (3+,0+), which is the union of the
dynamical system let us first consider the clasggsnC' pairs of all three classe8?, €2, andC? in Eq. (24). The
whose representatives correspond to stable FP’s. We hergansition Table Il shows that there are just two possibilities
fore form pairs (7,1'7") abbreviating the two classed;;  of minimal sets:Sqygqie={Co- ,C,_} 0r {C;_,Cs_}. Each
and A, for anyC' of these sets has to be combined with s®ts that stabilize

Cl(1+,2+) or (2+4,3+) the sinks o= F(x) to yield a possible sef. Since the latter
are already stable, the identity transformatifiy),={Cq.}
is sufficient. Indeed, it is easy to see that no otbgy is able

C3(1+,2+) or (2+,3+). to achieve the same: Sinks can occur in béthandC? for

the classesd;, and.A,. and inC? for the classesd,, and

When looking for the minimal set of matric€,, necessary 4., . We therefore can list these different classes of sinks
for stabilization one has to take into account that only certairand setsS;,, of matricesC,,, necessary to stabilize them as
kinds of FP’s can occur in the syster¥F(x), Eq. (4), follows:

C%(1+,2+) or (2+,3+) or (3+,0+) (29

original classes stable classes sets of stabili€igg
C'NA,: (1+,2+) {Coy} or {Cyy}
C'NA,.:  (1+,2+) or (2+,3+) {Cy.} or {Cy,,Cs.}
C?NAy,:  (1+,24) or (2+,3+) {Cy,} or {C;,,Cs,}
C?NAs.:  (2+,3+) or (0+,3+) {Cy.} or {Cy,,Cs,} (25)
C3NAy,: (1+,2+) {Co+} or {Cy:}
C3NAy,:  (1+,24) or (2+,3+) {Cy,} or {C;, ,C3.}.

So the smallest set that stabilizes any sink independent of the Let us remark that the above discussion also includes
classe<?, €2, andC?3is Sgn=1{Co.}. If we now form the  sinks of the original systerfiisince they become sinks &F
unionsSsaqaidd Ssink tO get a set of matriceS,,, that stabilize  and can therefore be treated in the same way, i.e., are “sta-
all FP’s of a two-dimensional fully chaotic dynamical systempilized” using the same minimal set$; or S,.

we end up with two “global” minimal sets: The concept of characterizing FP’s by sets of manifolds
S,={Co+ ,Co_,Cp_} which are invariant with respect to the operati@)s can be
extended in a natural way. One can consider manifolds
and which are composed by not only two subsg&tsandZ, as
S,=1Co ,Cy_,Cs_ 1. (26) above, but of four subsef3; ...Z,. These subsets are de-

fined implicitly by demanding a given ratio of the two com-
There are other sets which also do the job, but they contain gtonents of the flux. For the linear regime they correspond to
least four matrices and are therefore not minimal. In previougour angles{ ¢+, ., 3, ¢4}, which are a generalization of
numerical investigations it was observgd5,26| that the the parameters dmin,Pmag iN the discussion above. This
transformation belonging to the matiGq, yields a particu- larger set of parameters leads to a finer partition of the space
larly large number of stabilized fixed points. From the aboveof all 2X 2 matrices, which in turn allows a complete assign-
discussion this now becomes understandable s@weis  ment of stability properties to the different matrices. The
responsible for the stabilization of the sinks in Eg). which  definition of the family of a given matrix is analogous to the
occur in many different classes. corresponding definition, Eq10), and reflects the action of
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the group of matrice§C,,}. However, finding the proper d,
partition is not straightforward and is left to a future inves- 10° -
tigation. e ) ) T
10°
I1l. APPLICATIONS

In this section we apply the SD method whose theoretical 107"
background has been discussed so far. Furthermore we will
discuss several improvements of its original algorithmic 10" |
implementation to locate the UP(O'85,2€. With respect to
the detection of the orbits our aim is twofold. First we are "

interested in complete sets of UPQO’s for higher periods of the
above maps and in analyzing them with respect to the distri-
butions of the corresponding Lyapunov exponents. Second
we want to demonstrate the suitability of our method for

detecting the least unstable orbits up to high periods. The
latter is an extension of the work given in R¢26]. We FIG. 6. Distribution of the distances,, of the orbits of the

remark that very recently an efficient algorithm for detectingikeda map for periog=15 of the setN,. The abscissa of the figure
UPO'’s in chaotic systems based on a combination of the SRovers the 16 076 pairs of FP’s ;.

method and a Newton—Raphson-like approach has been de-

veloped and successfully appli€29]. pear in a particulaN; , (and therefore in\;) with (ko)
=(0+), (0—), (2-), but which are not contained in any
otherN;, j<i.If nj_1y,=n; =0, i.e., no additional FP’s
have been found when propagating two subsequent grids
Concerning the efficient algorithmic implementations ofGi_l’ G, the set of FP's of the transformed syst&q) is

0 5000 10000 15000
pairs of orbits

A. Finding the fixed points

the SD method we face two main problems: ~ considered to be complete and the procedure of constructing
(1) the completeness of the detected set of UPO’s whickypsequent grids is stopped.
is of conceptual character, and The second improvement concerns the separation of

(2) separating closely neighbored UPO’s which is an issugyejghboring UPO’s. Using however an appropriately defined
only for our particular implementation of the SD methOd’distance d, between two orbits of periodp, X,

i.e., characteristic for our numerical approach.

Let us first address the completeness problem. Of coursg (Xi X2) 'y Yi=(YainYa) s 1=1,. .
there is no exact proof of completeness for the detected
UPO’s within the SD method. However, a properly chosen dey= MiN > (Xji—Yj(i+kmodp)) - (27)
sequence of sets of initial conditions, which cover the phase '_‘f%'_"l EEE

space of the dynamical system as neat as possible, can sig-

nificantly lower the probability of missing any UPO’s. Due  This can be achieved as follows. We consider a set of

to the presence of length scales which differ by many order&P’s that belong to different periodic orbits. The FPs ob-

of magnitude induced by the fractal structure of the corretained in the procedure of propagating the transformed sys-

sponding strange attractor we proceed here as follows. temsS,,, S,_, andS,_ as described above provide an
We introduce a set of grid&;, i=1,2,... ofstarting example for such a set. By forming all possible pairs of any

points which are cumulative in the way that the point$Spf  two FP’s of this set and looking at the resulting distribution

fill gaps on the attractor that are larger than a given size inf values ofd,, (e.g., by plotting alld,, in a logarithmic

the union of the preceding grids;UG,U ...UG;_;. In  scalg one can distinguish three subsets, separated by gaps

the particular case of the Ikeda mégee belowwe generate differing by several orders of magnitud€&ig. 6). The set

a sequence of six gridS,, ... Gg with G; containing ap-  with the largest values af,, contains all pairs formed with
proximately 4500 points, whil&;, i=2,...,6contain ap- different orbits, whereas the second and third largest set is
proximately 1500 points each. The starting points of each sesomposed of pairs of identical orbits. A possible explanation
G, are propagated with the transformed ma&ps , Sy_, for the appearance of the gap between the second and the
andS,_, i.e., applying the matrice€y,, Cy_, andC,_ third zone is the following: A trajectory of the transformed

according to Eq(1). The propagation of a particular trajec- map approaches the FP on a curve, which in the local but
tory is stopped at the pointif 6=|f(P)(x)—x|<e, wheree still nonlinear neighborhood is close to the least stable of
is the desired resolution of the FP’s. For periodic orbits ofboth stable manifolds of the FP. Two trajectorigs} and

the Ikeda map wittp=14 and 15, e<10 ° turned out to  {z} can therefore evolve toward a B® along the same or
be sufficient to resolve the different cycles. Propagating th@pposite directions. The same holds for all other FPs of the
starting points of the grids; with Sy, , Sy_, andS,_  orbit f(0(x,) with the trajectories {f("(y))} and

yields the setN; o, Nig_, andN;, , i=1,...,6, re- {f((z)}, r=1,... p—1. Inthe case of an antiparallel ap-
spectively, of points which to good accuracy approximate thgroach to the FPs of a given cycle, the contributionsl tp
FP’s of the lkeda map. The s&j=N; o, UN; o UN;,_ are much larger compared to the case of a parallel approach,

contains the FP’s of the map found by propagating the pointsvhich finally yields the gap between the secofmdrallel
of G;. Then we consider the number,, of FP’s that ap- approach and third (antiparallel approadtregion in Fig. 6.
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If the first and the second zone happen to merge, the accu- TABLE Ill. The number of prime cycles with periqgl the total
racy of the FP’s is not sufficient to distinguish different or- number of cycle points of ordey, and the topological entroply,
bits and has to be refined by further propagation with thefor Ikeda map, periodp=12, .. .,15.
corresponding transformed maps. What is more, this distinc=
tion can be used to derive an estimate for the absolute accu- ~ Periodp 12 13 14 15
racy of the FPs derived by p_ropagating t_he appropria;ely No. of prime cycles 110 194 317 566
transfo_rmed system: The mfaxn“_nal separation of two points No. of fixed points 1384 2523 4512 8518
belonging to the same cycle is given by the square root of the Topol. entropy 0603 0603 0601 0603
value ofd,, at the upper edge of the lowest band in the
distribution of values ofl,, .

With the above method we selected exactly one point of i )
each periodic orbit we found. The other points are obtained A rough hint towards the completeness of the result is the
by simply propagating the selected point with the originalconvergence of the corresponding topological entrdpy

map. =limy_.hy, with h,= In n(p)/p, n(p) being the number of
FPs of all cycles of periogh (see Table Ill. h seems to be
B. Complete sets of orbits and Lyapunov distributions converged fairly well to a constant value. Our sets of orbits

for the lkeda map, together with the corresponding results
for the Henon map, allow us to study the distributions of the

Lyapunov exponents of the UPQ’s for the two different sys-
tems(see below.

Before entering into this discussion we comment on some
observations made by applying the SD method to the lkeda
map. As explained in Sec. Il B, each point of a UPO is sta-
&)ilized by two matrices, which both have either positive or
negative determinant. Therefore, we can group the points of

In the following we first focus on the Ikeda mdg8].
It is given by X,;1=a+ B(X,COSW,~Y,SINW,), Vni1
= B(X, SINW,+Y, CcosW,), where w,=y—[8/(1+x2+y?)].
The attractor to be investigated appears tor1.0, B
=0.9, y=0.4, and5=6.0. For the Ikeda map the periods
p=1,2,...,13have already been investigated in R5].
In order to indicate the applicability of the previously dis-
cussed algorithmic implementation of the SD method beyon
those periods we calculate complete sets of orbits for

—14.15. one UPO of periog into the sets
S, (p):sinks, stabilized by either Cy,, C;;,, C,., or Cs,, (29
S_(p):saddles, stabilized by eitherC,_, C;_, C,_, or C5_. (29

We found the surprising result that for all periogdss1-15  distribution is expected generally to be well approximated by
both setsS,(p) and S_(p) contain the same number of a Gaussiaf12,30. However, globally the distributions of
points, |S, (p)| and |S_(p)|, respectively. The values are both maps clearly deviate from Gaussian behavior in some
[S.(p)|=1,2,4,8,11,26,36,64,121,242,419,692,1262, andlespects.

2256 and 4259 fop=1-15. Index theory31] suggests that (i) Unlike symmetric distributions, both distributions ex-
the equalityiS, |=|S_| is a general law. This implies a sym- hibit an enhancement for small values of the Lyapunov ex-
metry relation between the orbits of the map: Each orbit withponent. This indicates that there are correlations within these
a positive determinant of its stability matrix is related to orbits.

exactly one orbit with negative determinant. In Sec. lll, we (ii) A second feature is the occurrence of peaks in the
will seek the most stable orbits of the Ikeda map for highemain bulk of the distribution. A characteristic peak of the
periods and we will find that a similar pairing of orbits, i.e., Henon map appears @ =0.551 and a similar spike is vis-
two orbits, one inS, and one inS_, have nearly the same ible for low values atA =0.435.

Lyapunov exponent. For all detected UPO’s we calculate the Probably the Lyapunov distribution for the cycles of the
Lyapunov exponent\ ,,=log(|p|)/p, wherep is the largest |keda map displays similar features, though the number of

eigenvalue of the matrif =M ... -My-My. cycles for periodp=15 is not enough to allow for a suffi-
Figure 7 shows the normalized distributio®(A) of  gjent resolution of the distribution.
Lyapunov exponentsd. of all orbits of orderp=24, ... ,27 These features show that the Lyapunov distributions con-

for the Hewon map [22] given by X,.1=1.4-X.  tain interesting information on the systems dynamics.
+0.3Yn, Yni1=Xn, and for p=12,...,15 of thelkeda

map (primitive orbits only. For both maps the Lyapunov

exponents form a band and the distributions show a more C. Stability ordering of cycles
and more pronounced peak psncreases. The peak of the
distribution appears around=0.5 for the H@on and Since the SD method is, by construction, changing the

around A =0.68 for the lkeda map. Around this peak, the stability properties of a dynamical system, it is not surprising
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values\ U}, . The area in each subfigure which is shaded gray
indicates the approximate position of the point§)},(\ ),
for period p=15. Obviously the distributions become in-
. : | . creasingly flatter with increasing, which corresponds to a
ggzs/‘;is%}mﬁg ?;:g?olﬁ]gezsgéiﬁgo:gt& thiT\ bé);h better stability ordering of the respective peri(_)dic orbits. This
ko " allows us to calculate the least unstable orbits of a map in a
2 ha\_/e an ab;olute _\_/alue Iess_t_han unity, which marks th%ystematic way. We decrease the value\afsed in Eq(1)
transition from instability to stability. and register the stabilized points one by one. The main dif-
As introduced in Ref{26], an approximately monotonous  ference to the procedure in RER6] is that we now have to
relation between\ §}, and the critical value\{}) ; can be ob-  consider the set of alC,, matrices to find the\ ) as the
served. For the orbits of the Hen map, which are stabilized largest\() . of all pointsr; of an orbit. To implement these
by a specificCy,, matrix, this monotonous relation can be jgeas, we construct a successive number of cumulative grids
clearly seen. However, when examining other maps, e.9., thg | G, G, ... leading to an increasingly finer covering of
lkeda map, one finds that this relation is obeyed less striCllyihe attractor as described in Sec. Il A. For our investigations
However, a slightly different concept of ordering does theyf the Heon and Ikeda map we used ten gr@s, . . . .Gy,

job: We consider all points(”’, i=1...p of an orbitj of  each with about 250 points. Then we perform the following
given periodp, which in general are stabilized by different steps(starting withA =0.8 andi=1).

Cy, matrices with different critica}\(k'(;i values. In contrast (1) Begin with an initial value of\ and a gridG; of

to the approach chosen in R¢26] we now allow all eight  points. Propagat6; eight times with the stabilized systems
Cy, matrices to be used as stabilizing transformations. Asiccording to Eq(1) for fixed \, using a differentCy, ,k
explained in Sec. |1 B, each point of the orpits stabilized =g, .. 3, o=+ each time.

by two matricesCy,, Cy/,, With a particularn({);. To (2) If step (1) does not yield the desired number of orbits,
each orbit of periog there belongs a set of two, three, or replacex=r-\, r~0.8, and perform stefl) again.

four Cy, matrices stabilizing different cycle points and a set  (3) Replaceg;—g;.;, A—r-\ and go to stegl).

of 2n values)\(k{li . Now we ask for the largeat, out of this The procedure converges if the set of themost stable
set and call it thex{), of the corresponding orbit. The cycles resulting from the gridd;=G,UG,U ...UG; re-
corresponding plot for the Ikeda map is presented in Fig. 8nains the same compared to the set obtained from the grid
and shows a sufficient ordering of the stability coefficients ofH;, ;=G;UG,U ...UG;; . As a result of this procedure
the detected UPOs with respect to the corresponding criticalie get a set oN orbits for each grid.

that the value of the tuning parameteis of relevance to the
magnitude of the Lyapunov exponems)) to be detected.
The critical parametex,, ; of a pointx; of a cycle stabilized
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A‘:’:b(p) ond one mirrors the change of the azimuthal angle of the flux
in the neighborhood of the FP’s. According to these classi-
fications of the stability matrices we can assign to each set of
corresponding FP’s a certain dynamical behavior related to
their stability properties. This provides new insights into the
N mathematical group structure which is impressed by the sta-
Y Betedp 1 bility transformations onto the stability matrices and FP’s. In
particular this allows us to determine the minimal set of
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""" Iffg’%! i, +ge:§,n transformations necessary to detect all FP’s of a given two-

04 t s fgf’fi%ih . ] dimensional system. We thereby learned how simple global

3 +H *i*%iiiﬁé' _ operations on the dynamlcal system qhange the stability

P S Sh ﬁj&i';*; properties of fixed points. This point of view has the advan-

: . tage that it does not rely on the analytic expressions for ei-

genvalues and is therefore more suited for the extension of
the method to higher dimensions.

The second part of the present work deals with the algo-

FIG. 9. The Lyapunov exponents of the ten least unstable orbit&ithmic implementation of the SD method, its application to

of Ikeda and Heon map fop=1 . . . 36. The inset shows the same h€ finding of UPO’s in strange attractors, as well as the
distribution on a log—log scale. evaluation and interpretation of the achieved results. In par-

ticlar we demonstrate that even longer cycles can be de-
éected. This is achieved by using a special sequence of grids
of initial points for the propagation and by an improved tech-
'?ﬂque to separate distinct UPO’s. Thus it becomes clear that
p ) %he maximal period of orbits to be detected by the SD
lkeda and Heon map for periodsp=1-36. These method is limited by the machine precision, not by failure of
Lyapunov exponents corespond to thg Iowgr nge of théhe method itself. As a result of our investigations of the
distribution of Ly?‘p“'."o" exponents as given in Fig. 7. Ikeda map we get distributions of Lyapunov exponents
TWO features in Fig. 9 are remarkable. . hich show characteristic deviations from the first-order ap-
(M) The Lyapunov exponents of the least unstable orbits Oﬁ/roximation by a Gaussian distribution. The distributions of
a certain 'engt_hp of both the Heon_ a_nd Ik_eda map are the Haon map show similar, but distinct characteristics.
approx[mately in the same range. This is vghd for QII peno_ds nalyzing the UPO's of the Ikeda map for the periopls
p considered. They both decrease with increasing perio =1-15, with respect to their stability in all different trans-

Ih's correds_p(t)nk()jst_ to ta Sh(;ft (;)f the _Iowerl edszg\ef/v?;] theformed systems, suggests an underlying symmetry relation
yapuhov distribution towards decreasing vaiuesiowl for this map which implies a correlation between distinct

Tcreasmg period. tT_he ||nset| n II:I?.T?w shows tfhfh starp PO's of the same period. As a second numerical investiga-
yapunov exponents In a 10g—iog plot. fhe mean otine to al[ion we search for the ten periodic orbits with the smallest

distribution, i.e, of all UPQ’s for a certain period, is the Lyapunov exponents for the Ikeda andrioe maps. Since
average Lyapunov exponehtof the maps which is approxi- these orbits are the least unstable ones, it is possible to ex-

mately constant. Therefore the linear decrease in Fig. 9 img : o :
. ) . O end the investigation up to periquo= 36 for both maps. The
plies that the spreading/(p) of the tail of the distribution of distributions of Ec;lhe cyckre)s aspa function of the perigd show a

the Lyapunov exponents, as dlsplayed in Fig. 7 for peppq remarkably regular overall tendency with characteristic de-

grows approz]qmately as an algebraic function of the per'Odviations for both maps. What is more, this part of the

|.e.,_W(p)ocp » 1>0. . Lyapunov spectrum covers the section of small values of the
(il) Both maps show exceptionally small Lyapunov eXpo'Lyapunov distributions which differs most from the Gauss-

nents (e.g., periodsp=13,16,18 andp=26,28,30 for the ;. ,"noximation and might therefore provide valuable in-
Henon map, periodp= 19,21 ando=24,27,30 for the Ikeda formaﬁli%n on the dynamicgl systems. P

map. These orbits seem to approach the main part of the " £in a1y we remark on very recent developments concern-

+

0.2t o ~ 00
0 10 20 30
period p

For the two maps studied here we can clearly observ

distribution with increasing period. ing the detection of UPO's. In Ref29] the SD method has
been combined with the Newton—Raphson method in order
IV. SUMMARY to speed up convergence in the linear neighborhood of the

This paper has two main objectives. First it presents £P. Such hybri(_j _algorithm_s are very desirable.since they
novel approach toward a better understanding of the gyerform very efficiently, while preserving the desired global
method, thereby establishing a geometric interpretation anfifaracter of the SD method.
classification, and second it provides results of applications
of the SD method to two dimensional maps.

In the first part we investigated the stability transforma- D.P. thanks the Deutsche Forschungsgesellschaft and the
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tions of the corresponding stability matrices of all FP’s.cial support. D.P. gratefully acknowledges the hospitality of
These are based on properties that change in a regular artébrew University, Jerusalem. The hospitality of the Depart-
well-defined way when the stability transformations are ap-ment of PhysicgD.P. and P.S.of the University of Athens
plied. The first classification is with respect to manifoldsis appreciated. The authors thank R. L. Davidchack for valu-
which are invariant to the stability transformations. The sec-able comments which helped to improve this work.
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