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Theory and applications of the systematic detection of unstable periodic orbits
in dynamical systems
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A topological approach and understanding to the detection of unstable periodic orbits based on a recently
proposed method@Phys. Rev. Lett.78, 4733~1997!# is developed. This approach provides a classification of
the set of transformations necessary for finding the orbits. Applications to the Ikeda and He´non map are
performed, allowing a study of the distributions of Lyapunov exponents for high periods. In particular, the
properties of the least unstable orbits up to period 36 are investigated and discussed.
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I. INTRODUCTION

Unstable periodic orbits~UPO’s! represent a skeleton o
complex chaotic systems and allow the calculation of ma
characteristic quantities of the underlying dynamics l
Lyapunov exponents, fractal dimensions, and entropies
the attractors@1,2#. For dissipative systems expansions
terms of periodic orbits are well established in the literat
@1,3–6# and demonstrate the relevance of the cycles for
derstanding chaotic dynamics. Both low-dimensional mo
systems such as discrete maps@1,2# as well as experimenta
time series@7–10# have been studied. Furthermore the ser
expansion of semiclassical properties of classically cha
Hamiltonian systems, with respect to the length and stab
coefficients of the periodic orbits, is a fruitful and frequen
applied technique: it allows the investigation of the ene
level density as well as other quantum properties@11#. Much
has been added to the importance of the UPO’s by us
them to control chaotic dynamical systems~see Ref.@12# and
references therein!.

More recently, cycle expansion techniques have been
vented and shown to converge well, especially when
symbolic dynamics is well understood@4,13#. Series expan-
sions over periodic orbits used for calculating dynamical
erages are typically ordered according to the orbit lengtp
@1,13–15#. Drawbacks of these expansions are the la
number of orbits~increasing exponentially withp), the re-
quired completeness of the set of cycles for a given per
and the slow convergence@14,15#. A promising proposal was
made@16,17# stating that series expansions could conve
better if they are truncated according to the stability of
orbits @18#. What is more, stability ordering does not rely o
the knowledge of the systems symbolic dynamics, which
unknown for generic dynamical systems.

Chaotic dynamics is intrinsic for many physical system
which is why periodic orbit theory is not restricted to speci
areas of physics. Much effort has been spent on develo
efficient techniques for calculating UPO’s of a given d
namical system. What makes this quest so difficult is
PRE 621063-651X/2000/62~2!/2119~16!/$15.00
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exponential proliferation of the number of cycles with i
creasing period and their increasing instability~in fully cha-
otic systems!. Specifically the modified Newton-Raphso
method is an all-purpose method, which does not requir
special form of the underlying equations of motion. How
ever, it needs a good initial guess for the starting poin
Therefore this algorithm rapidly becomes expensive and
limited to relatively short periods and low-dimensional sy
tems. A variety of other methods have been developed wh
focus either on time series analysis or on finding UPO’s
given equations of motions@2,4,14,19–21#. For a special
class of systems, a numerical technique for calculating a
trarily long UPO’s to any desired accuracy was introduced
Ref. @21# for the Hénon map@22# and later applied to a few
other dynamical systems@15,23,24#. This method allows the
systematic computation of all UPO’s of any given orde
each given by a unique binary symbol sequence.

Recently, we proposed an alternative method~in the fol-
lowing referred to as SD method! for the calculation of
UPO’s @25#. The basic idea is to transform the fully chaot
system to a new dynamical system with the periodic orb
keeping their positions but changing their stability prop
ties: For a particular transformed system a certain fraction
the periodic cycles becomes stable and can be found by
ply iterating the transformed system. This fraction depen
on a tuning parameter that represents an upper stability
off for the fixed points~FP’s! to be detected. In the following
we will use the term ‘‘stabilization’’ and ‘‘stabilized fixed
points’’ for the process and fact, respectively, that the u
stable FP’s of the original chaotic dynamical system ha
become stable in the corresponding transformed system.
reader is kindly asked to distinguish this use of the te
‘‘stabilization’’ from the one used in control theory of chao
via unstable periodic orbits. According to the above the
method allows us the systematic calculation of the least
stable periodic orbits of any given orderp @26#. The latter
possibility meets the requirements of the series expans
using stability ordering, since they allow to derive propert
of a physical system by exploring only the least unsta
2119 ©2000 The American Physical Society
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2120 PRE 62PINGEL, SCHMELCHER, DIAKONOS, AND BIHAM
period orbits up to a given stability cutoff. The technique
the SD method is highly flexible and can be applied in
straightforward manner to a great variety of discrete dyna
cal systems of any dimension. Continuous dynamical s
tems can thereby be treated using properly chosen Poin´
surfaces of section. Therefore, it might open the way
employing the proposal of Refs.@16,17# for a great variety of
dynamical systems.

The present work has a twofold purpose. The first goa
to enhance our understanding of and give insights into
SD method. To that end we provide a complete classifica
of the involved transformations. As a result we gain bo
topological as well as geometrical understanding and in
pretation of the transformations. Corresponding invari
structures are thereby revealed and the FP’s can be clas
similarly to the stabilizing transformations. This opens t
future perspective to selectively detect UPO’s not ‘‘only
with respects to their stability but also with respect to cert
desired geometrical properties. We will thereby learn h
simple global operations on the dynamical system change
stability properties of fixed points. The second purpose
this work is to elucidate and extend the work in Ref.@25#. To
this end we provide extensive results of applications of
approach to the Ikeda@28# and Hénon @22# maps. For the
Ikeda map, we calculate the complete sets of FP’s for per
up to p515. The number of orbits is large enough to inve
tigate the distribution of Lyapunov exponents. This distrib
tion is compared with the corresponding one of the He´non
map according to Ref.@21#. Next the algorithm of Ref.@26#
to determine the least unstable orbits is slightly modified a
applied to the Ikeda and He´non map. The ten most stab
orbits of a given length up to periodp536 are studied for
both maps. Their Lyapunov exponents vary in a characte
tic way as a function of the period.

In detail we proceed as follows: In Sec. II A we briefl
review the SD method for finding UPO’s as described in R
@25#. The topological/geometrical classification and ge
metrical extension is presented and discussed in Sec. II B
Sec. III A we show the results of complete sets of orbits a
we present and analyze the distribution of Lyapunov ex
nents in Sec. III B. The extended method to stabilize the le
unstable cycles is given in Sec. III C together with the c
responding results for the He´non and Ikeda map. Section IV
concludes with a summary.

II. THEORY OF THE STABILIZATION
OF FIXED POINTS

A. Brief review of the underlying method

In order to be self-contained and for our further theore
cal investigation we recall in the following the key ideas
the method developed in Ref.@25# to detect UPO’s. Conside
a discrete chaotic dynamical systemU:xi 115f(xi) in n di-
mensions. The FP’s of thepth iteratef(p) are points of the
UPO’s of periodp. To find the FP’s ofU the following
strategy is employed: A set of transformations is specifi
which transformsU into new dynamical systems$Sks% with
the FP’s keeping their original locations in space. The set
$Sks% is chosen such that for each unstable FPau of U, there
exists a specific transformed systemSk8s8 of the set$Sks%
for which this FP has become dissipatively stable@i.e.,
f
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Re(l i),0 for continuous systems,ul i u,1 for discrete sys-
tems, with eigenvaluesl i ] and can therefore be detected b
simply iterating properly chosen starting points of the tra
formed systemSk8s8 . For eachSk8s8 a different set of FP’s
of U is stabilized. Let us denote byI min the minimal set of
pairs (ks) with the property that there exists for each u
stable FPau at least one pair (k8s8)PI min for which Sk8s8
transformsau into a stable FPas . This set holds for arbi-
trary periodp. The search for the FP’s ofU is then straight-
forward: A starting point chosen in the global neighborho
~see below! of the FPau iterated with the transformed dy
namical systemSk8s8 ,(k8s8)PI min converges, due to the
stability of as , to the position ofas which is equal to that
of au .

Propagating a set$xi% of starting points and using al
(ks)PI min we end up with a set of FP ofU whose complete-
ness can be ensured by successively enlarging the set$r i%.
Let us now specify the systemsSks :

Sks :xi 115xi1Lks@ f~xi !2xi #. ~1!

Sks are linear transformations of the original dynamical la
U. Lks are invertible constantn3n matrices. The definition
of Sks andU clearly shows that their FP’s are one to one a
at the same positions. Equation~1! implies the following
relation for the stability matricesTU andTSks

of U andSks ,
respectively,

TSks
511Lks~TU21!. ~2!

In Ref. @25# it was shown thatLks can be cast in the form
Lk5l•Cks with 0,l,1. The set of matrices$Cks% con-
tains all orthogonal matrices with only one nonvanishing e
try 61 per row or column, i.e., they represent a group
special reflections and permutations.

s56 indicates the sign of the matrix determinant, andk
is an additional label to uniquely specify the matrices. In tw
dimensions we haveC0152C215(0

1
1
0), C0252C22

5(0
21

1
0), C1152C315(21

0
0
1) and C1252C32

5(21
0

0
21). The matrices$Cksuk50 . . . 3;s56% form a

group with$Ck1uk50, . . . ,3% ~matrices with positive deter
minant! being a subgroup of order 4. Table I is the corr
sponding multiplication table. Obviously, the product of tw
matrices is

Ck9s95Cks•Ck8s8

TABLE I. Multiplication table for the matricesCks .

• C01 C11 C21 C31 C02 C12 C22 C32

C01 C01 C11 C21 C31 C02 C12 C22 C32

C11 C11 C21 C31 C01 C32 C02 C12 C22

C21 C21 C31 C01 C11 C22 C32 C02 C12

C31 C31 C01 C11 C21 C12 C22 C32 C02

C02 C02 C12 C22 C32 C01 C11 C21 C31

C12 C12 C22 C32 C02 C31 C01 C11 C21

C22 C22 C32 C02 C12 C21 C31 C01 C11

C32 C32 C02 C12 C22 C11 C21 C31 C01
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with

k95k81s8k mod 4

and

s95ss8. ~3!

The notation introduced above is different from the one u
in Ref. @25# and will reveal its meaning in the course of th
classification of all possible FP’s~occurring in the original
and transformed system!, as provided later on. The arith
metic with respect to the first index (k,k8,k9, . . . ) has al-
ways to be taken modulo 4. We remark that the minimal
I min is significantly smaller than the set of pairs (ks) belong-
ing to the matrices$Sks%. Given a certain unstable FPau the
above choice of linear transformations represented by the
$Cks% of matrices allows us to find a particularCk8s8 such
that the real parts of the eigenvalues ofCk8s8(TU21) are
negative at the position of the FP. As a consequence@see Eq.
~2!#, if l is chosen sufficiently small, the magnitude of t
real parts of the eigenvalues of the FPas in the transformed
system are smaller than one, and we therefore encoun
stable FP that can be detected as described above. The
cal value ofl, which just suffices to make the FP stable, c
immediately be read off from the quadratic equations re
ing the stability coefficients of the original systemU and
those of the transformed systemSks @25#. The above proce-
dure can easily be extended to higher iteratesf(p)(x) of U @by
replacingf with f(p) in Eq. ~1!# allowing us to determine al
orderp cycles ofU.

The advantage of the SD method is clearly its global ch
acter in the sense that even points far from the linear ne
borhood of a FP are attracted close to the FP after a fi
number of iterations of the transformed dynamical law. T
basin of attraction of a single stabilized FP is a simply co
nected area in phase space. The typical number of sta
points needed to obtain the UPO’s of a given length on
attractor is only slightly more than the expected number
cycle points themselves.

The parameterl is a key quantity here. It is related to th
stability of the desired cycle in the transformed system. W
increasing period of the cycles,l has to be reduced to
achieve stabilization of all FP’s. One may, however, also
interested in the most stable periodic orbits of a given per
p @26# which is one of the key issues of the present work.
this contextl operates as a filter allowing the selective s
bilization of only those UPO’s that possess Lyapunov ex
nents smaller than a critical value. Therefore, by starting
search for UPO’s within a certain periodp with a valuel
>O(1021) and gradually loweringl we obtain the sequenc
of all unstable orbits of orderp sorted with increasing value
of their Lyapunov exponents. In Ref.@26# it was shown that
for the specific choice (ks)5(01)PI min the relation be-
tweenl and the stability coefficients of the FP’s of the orig
nal systemU is a strict monotonous one. Transformed d
namical systemsSks belonging to other pairs (k8s8)Þ(0
1) do not obey such a strict behavior but show a rou
ordering of the sequence of stability eigenvalues of the F
of U stabilized in the course of decreasing values forl.
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B. Geometrical interpretation of the stabilizing transformations
Sks

1. Classification scheme

The stability properties of the FP’s of the dynamical sy
temsSks have been investigated in Ref.@25# exclusively in
the context of their relation to the stability coefficients of t
original systemU. To gain a deeper insight into the geo
metrical meaning and the interpretation of the transform
tions Sks , which turn unstable FP into stable ones, one h
to go beyond the pure consideration of their eigenvalue
the positions of the FP’s.

In the following we develop a geometrical approach
lowing us to classify the FP’s which are stabilized by diffe
ent matricesCks . We will hereby focus on systems with tw
degrees of freedom. Expectedly there should, however, b
major obstacles with respect to the generalization to arbitr
dimensions. When dealing with the stability transformatio
the natural problem arises: Restricting ourselves to the se
orthogonalCks matrices with exactly one nonvanishing ent
(61) in each row and column and to the linearized dyna
ics around a FP, what can we say about the action of
matricesCks @see Eq.~1!# on this simple dynamical system
To approach this problem consider the following set of eq
tions:

ẋ5F~x!, F~x!5f(n)~x!2x, F~x!5„F1~x!,F2~x!…T,
~4!

which describes a vector field around the FP located atxf ,
whereF(xf)50 ~the superscriptT denotes the transposed!.
In the following sections we generally focus on the discu
sion of the systemF(xf), unless noted differently. Now we
apply the transformation

ẋ5Fks~x!5Cks•F~x!, Fks~x!5„Fks,1~x!,Fks,2~x!…T.
~5!

It is important to note that the dynamical systemSks in Eq.
~1! represents a discretization of the continuous system,
~5!. Multiplication with Cks intermingles thex andy coordi-
nates ofF(x), which in general changes the eigenvalues a
eigenvectors of the corresponding stability matrix. One
rection of the above problem is: Are there any points in
neighborhood ofxf where this change of the dynamics
controllable? In fact let us consider the manifoldsZ1 ,Z2 de-
fined by @27#

Zi5$xuFi~x!50%, i 51,2. ~6!

In the linear neighborhood ofxf these sets clearly defin
straight lines. In the more general case of a nonlinear sys
they are implicitly defined continuous curves in an area
phase space where the Jacobian of the map is regular. T
intersection isZ1ùZ25$xf%. With Cks acting on Z1 ,Z2,
they either stay the same ifCks does not interchange th
coordinates, or they are transferred one onto the other ifCks

does interchange the coordinates. In this sense, the man
Z5Z1øZ2 is invariant with respect to application of the s
of matricesCks , i.e., Cks(Z)5Z for all (ks).

In the following we derive a classification scheme for t
linearized dynamics around a FP whose validity is, howev
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due to the global character of our approach, not limited to
linear regime. In order to elucidate the action of the stabi
ing transformations and to distinguish between FP’s w
different stability properties, let us introduce two differe
ways of classifying the matrices of a two-dimensional d
namical system, each providing its own insights. The cla
fications are such that they reflect certain geometrical
tures of the flow around the FP. These features are
different invariant setsZ on the one hand and addition
geometrical properties of the matrices, which have a part
lar Z in common, on the other hand.

The first classification introduces classes consisting
matrices which have the manifoldZ5Z1øZ2 in common.
They are labeledC(fmin ,fmax), wherefmin andfmax are the
azimuthal angles of the manifoldsZ1 and Z2, respectively,
being sorted with increasing order.fmin andfmax are related
to the stability matrix of the FP in the following way: Th
linearized dynamics of Eq.~4! in the neighborhood of a FP
readsẋ5B•x, whereB5(ai j )1< i<2

1< j <2
is the stability matrix of

F(x) at the FP andx is the displacement with respect to th
FP. It can be shown thatfmin andfmax are given by

~fmin ,fmax!5~min
i

$f i%,max
i

$f i%!

with

f i5arctanS 2
ai1

ai2
D , i 51,2. ~7!

If a stability matrixB belongs to the classC(fmin ,fmax) its
products$Cks•B% also belong to this class.

For the later discussion we introduce here three set
FP’s each of which is an infinite unification of class
C(fmin ,fmax):

C 15$C~fmin ,fmax!u0,fmin ,fmax,p/2%,

C 25$C~fmin ,fmax!u0,fmin,p/2,fmax,p%, ~8!

C 35$C~fmin ,fmax!up/2,fmin ,fmax,p%.

A further classification of the matrices within each cla
C(fmin ,fmax) is needed for a more detailed identification
the geometrical properties of the flux around a particular
For this purpose, we assign a label (l t) to each stability
matrix Bl t of FP’s with the following meaning:t561 gives
the sign of det(Bl t). To illustrate the meaning ofl, we write
F(x)5(r cosc,r sinc)T in polar coordinates and consider th
azimuthal anglecmin of F(x) for x5(cosfmin ,sinfmin)

T. By
construction,fmin can take the valuesmp/2, m50, . . . ,3.
Now we define the indexl 5m1t21 mod 4. Encircling the
FP on a unit circlex5(cosf,sinf)T, the normalized flux
F(x)/uF(x)u describes a circle in the local coordinate syst
centered inx, too. t gives the orientation of this circula
rotation of the flux (t511: anticlockwise,t521: clock-
wise!, whereasl is directly related to the phase of the flux
fmin . This naturally introduces a subsetCl t(fmin ,fmax) of
the classC(fmin ,fmax): those elements ofC(fmin ,fmax) be-
long to Cl t(fmin ,fmax), which possess the indices (l t), i.e.,
the signt for the rotation of the flux and the phasel of the
flux at fmin . We can now allowfmin ,fmax to vary while
keeping the indices (l t) of the matrices of this set fixed. Fo
e
-
h

-
i-
a-
e

u-

f

of

.

each (l t) we thereby form a classAl t5$Cl t(fmin ,fmax)u0
<fmin ,fmax<2p%. For fixed fmin ,fmax, multiplication by
the matricesCks transfers one complete setAl t into another
setA l 8t8 . The corresponding transitions are given in Tab
II. The asterisks in the first three columns of Table II indica
the setsC i andAl t to which stability matrices of a FP of a
two-dimensional chaotic system can belong. This is of r
evance when asking for the possible sets of matricesCks

which stabilize all FPs of a dynamical system~see below!.
As one can read off Table II, the matrixCks necessary to
transfer stability matrices of a classAl t into matrices in an-
other classA l 8t8 is given by

Cks :Al t→A l 8t8

with

l 85k1s mod 4

and

t85st. ~9!

It is important to note that Table II holds not only for th
unified setsAl t but particularly also for the individual sub
setsCl t(fmin ,fmax). It is a remarkable result that the mult
plication table of the matricesCks , i.e., Table I, considered
as a transition table, has the same entries as the trans
Table II. The multiplication law Eq.~3! becomes a law for
the transition ofCks to Ck9s9 via Ck8s8 with the correspond-
ing indicesk85k92ss9k ands85ss9. This suggests tha
the matrices in a classAl t are in a way similar to the matri
cesCks with k5 l ands5t as far as the rules for multipli-
cation with the matricesCks are concerned.

The classCl t(fmin ,fmax) still contains an infinite numbe
of ~stability! matrices. However, to gain relevant informatio
on the stability properties of FP’s it suffices, as we shall s
in the following, to know to which of the sets$C i u i
51 . . . 3% and additionallyAl t the stability matrix of the FP
corresponds.

TABLE II. Transition matricesCks necessary for transitions
between different classesAl t of stability matrices of fixed points.
The first three columns indicate the combination of classes oc
ring in a two-dimensional chaotic dynamical system.

C 1 C 2 C 3 ↗ A01 A11 A21 A31 A02 A12 A22 A32

A01 C01 C11 C21 C31 C02 C12 C22 C32

* * A11 C31 C01 C11 C21 C12 C22 C32 C02

* * * A21 C21 C31 C01 C11 C22 C32 C02 C12

* A31 C11 C21 C31 C01 C32 C02 C12 C22

* * * A02 C02 C12 C22 C32 C01 C11 C21 C31

* * * A12 C12 C22 C32 C02 C31 C01 C11 C21

* * * A22 C22 C32 C02 C12 C21 C31 C01 C11

* * * A32 C32 C02 C12 C22 C11 C21 C31 C01
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2. Properties of the angular functionsc„f… of the flux
and examples

Let us consider an arbitrary but fixed stability matr
Bl tPC(fmin ,fmax), Bl tPAl t , and form the matrices
Cks•Bl t , k50, . . . ,3;s561. Each of these matrices is e
ement, i.e., representative of a different classA l 8t8 and we
therefore have

Bl 8t85Cks•Bl t

with

l 85k1s l mod 4

and

t85s/t. ~10!

In the following we will call the set$Bl tu l 50, . . . ,3;t
561% the family of the matrixBl t . A central issue is to
analyze which members of the family of a FP are stab
Once the information on the stability of the members o
family becomes available this represents an important
toward the selective use of Eq.~1!, i.e., the selective detec
tion of FP’s.

In the following we study the orientational properties
the flux for a family of stability matrices with fixed but ar
bitrary (fmin ,fmax). For the matricesBl t5(bi j

( l t))
1< i , j <2

PAl t we introduce the angular functionsc l t(f) of the flux
ẋ5Bl t•x at a pointx5(cosf,sinf)T
he
.

p

c l t~f!5arctan
~Bl t•x!2

~Bl t•x!1
1pS 3

2
2sgn~Bl t•x!2D

5arctanS b21
( l t) cosf1b22

( l t) sinf

b11
( l t) cosf1b12

( l t) sinf
D

1pS 3

2
2sign~b21

( l t) cosf1b22
( l t) sinf! D . ~11!

c l t(f) is the azimuthal angle of the flux@given byFl t(x)]
with respect to a local polar coordinate system centered
the displacementx5(cosf,sinf)T. This is illustrated in Fig.
1. Let us derive relevant properties of the angular flux fun
tions c l t(f). c l t(f) is a continuous function off with
c l t(f)P@0,2p#. Due to symmetry reasons it is sufficient
consider the range 0,f,p. Furthermorec l t(f) is defined
mod2p andc l t(0)2c l t(p)5p. Its derivative reads

c l t8 ~f!5
det~Bl t!

Ll t
2 ~f!

, ~12!

with

FIG. 1. Definition of the polar anglesf and c l 8t8(f) of the
displacementx5(cosf,sinf)T relative to the FP at (0,0) and th
flux Fks(x)5(coscl8t8 ,sincl8t8)

T. (ks) indicates the particular sta
bility transformation applied according to Eq.~5!. The indices
( l 8t8) are given by Eq.~9! using (ks) and the indices (l t) of the
classAl t to which the stability matrix of the original FP belongs
Ll t~f!5uẋu5A~b11
( l t) cosf1b12

( l t) sinf!21~b21
( l t) cosf1b22

( l t) sinf!2 ~13!
e-
ics
the

ar
being the ‘‘velocity’’ of the flux in x. Since multiplication
with any Cks affects complete rows ofBl t by interchanging
them or inverting their signs,Ll t

2 (f) is invariant, i.e., the
same for any of the resulting matricesBl t . Two functions
c l t(f) andc l 8t(f) therefore differ only by a shift:c l t(f)
2c l 8t(f)5( l 2 l 8 mod 4)•p/2. l can be interpreted~see
also Sec. II B! as the phase of the linearized flux around t
FP

c l t~fmin!5~ l 112t!•
p

2
. ~14!

Accordingly we have det(Cks•B)5det(Cks)•det(B), with
det(Ck1)511 and det(Ck2)521 and therefore

c l t8 ~f!52c l 2t8 ~f!, ~15!
which yields

c l t~f!52c l t~fmin!2c l 2t~f!, ~16!

wheret561 indicates the sign of det(Bl t) and determines
whetherc l t(f) is rising or falling, according to Eq.~12!.

In the remaining part of this subsection we provide g
neric examples and illustrations of the lineazised dynam
around a FP and the corresponding angular functions of
flux for the different elements of a family$Bl t%.

The stability matricesBl t in Figs. 2~a! and 3~a! are mem-
bers of a family of the matrixM15(10

1
5

24), corresponding
to the classC(0.24,1.10). Figures 4~a! and 5~a! are obtained
in the same way, showing the family ofM25(10

1
5
24), which

is in the classC(0.24,2.03). Each subfigure shows the line
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FIG. 2. ~a! Phase portraits of fixed points with det(Bl t).0,0,fmin , fmax,p/2. ~b! and~c! are the correspondingc l t(f) diagrams. In
~a! the manifoldsZ1 ,Z2 ~long dashed lines!, eigenvectors~lines with filled arrows!, and some trajectories are shown. The areas shaded
indicate the intervals of the locations of the eigenvectors. They correspond to the shaded boxes in diagram~c! which show these intervals fo
the four FPs discussed.
th
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neighborhood of the corresponding FP. (x,y) are the coordi-
nates of the displacement of a trajectory with respect to
FP. The manifoldsZ1 ,Z2 are displayed as long dashed lin
with the direction of the flux on theZ1 , Z2 lines being in-
dicated with open arrows. The thick lines with filled arrow
show the position and stability properties of the eigenvect
e

s.

~For saddle points,vW e ,vW c are indicated by outward and in
ward looking arrows corresponding to the expanding a
contracting manifolds, respectively. For sinks and sour

the corresponding eigenvectors are labeledvW e,1 ,vW e,2, and

vW c,1 ,vW c,2 , respectively.! Additionally, some trajectories hav
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FIG. 3. Same as Fig. 2, but with det(Bl t),0, 0,fmin ,fmax,p/2.
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been included to visualize the direction of the flow arou
the FP. In Figs. 2~b!–5~b! the corresponding angular func
tions c l t(f) are plotted. It is important to note that the
particular functions—as well as the phase portraits given
the corresponding figures—are merely examples to dem
strate the qualitative variation of the dynamics generated
members of a family of stability matrices. There exist
general other families in the same classC(fmin ,fmax)ùAl t,
n
n-
y

whose phase portraits and functionsc l t(f) look different
from those displayed in the figures. However, the functio
c l t(f) of all these matrices inC(fmin ,fmax)ùAl t have the
values ofc l t(f) in f5fmin and f5fmax and the sign of
c8(f) l t in common. The actualc l t(f) can vary inbetween
according to the definition Eq.~11!. Nevertheless the abov
information about the stability matrices is in fact sufficient
determine their stability properties.
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FIG. 4. Same as Fig. 2, but with det(Bl t).0, 0,fmin,p/2,fmax.
th
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flux
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Now, looking at the examples in Figs. 2~a!–5~a! except
for the cases of spiral pointsB11 andB31 , we are already in
the position to suggest a criterion for the stability and
approximate position of the eigenvectors of the FP. Cons
the direction of the flux in each of the sectors which a
determined by the manifoldsZ1 ,Z2 and the coordinate axes
The manifoldsZ1 ,Z2 are by definition the lines for which th
first, respectively, second component of the flux vanish
Since the fluxF(x) is a continuous vector function of th
anglef there have to be certain valuesfe for which the flux
e
er

s.

F(x) is collinear with the position vectorx5(cosf,sinf)T,
i.e., F(x)56c•x, c.0. These anglesfe obviously are the
polar angles of the eigenvectors of the corresponding sta
ity matrix. The intervals where these anglesfe are located
are bounded byZ1 andZ2. The manifoldsZ1 andZ2 repre-
sent the boundaries of sectors in which the angle of the
varies byp/2. For reasons of continuity ofc l t(f) @see Figs.
2~a!– 5~a!# one or even two eigenvectors are located with
these sectors, which are shaded gray in the figures. In
cific cases parts of the sectors defined byZ1 and Z2 are
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FIG. 5. Same as Fig. 2, bu
with det(Bl t),0,0,fmin,p/2
,fmax.
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excluded for the localization of the eigenvectors since c
linearity of x and F(x) is not possible. In these cases t
outer coordinate system (x,y) represents the boundary of th
sectors for the occurrence of collinearity.

The fact thatfe is the polar angle of an eigenvector of th
stability matrixA is equivalent to

c l t~fe!5H fe:Re~l!.0, unstable eigenvector

fe1p:Re~l!,0, stable eigenvector.
~17!

This means that a crossing ofc l t(f) with

xn~f!5f1np, n50,1 ~18!

indicates an unstable or stable eigenvector for the co
sponding value off, respectively.
l-

e-

3. Stability properties of the classes and the alternative sets
of stabilization transformations

We will show in the following that for fixedfmin and
fmax two complete classesA l 8t8 and A l 9,t9 are related to
stable FP’s, i.e., the matrices in these classes have eige
uesl1 ,l2 for which Re(l1),Re(l2),0 holds. To these two
classes correspond two matricesCk8s8 and Ck9s9 which
transfer an original stability matrix in a classAl t into the
desired stable matrices inA l 8t8 andA l 9t9 . This corresponds
to a transformation of the original FP into the desired sta
ones in the transformed dynamical systemsSk8s8 andSk9s9 .
The two matricesCk8s8 and Ck9s9 which accomplish this
transformation can be read off the transition Table II imm
diately. In particular, it will become evident that a minim
set of threeCks matrices is sufficient to stabilize any FP of
two-dimensional fully chaotic system. What is more, th
classification proves to be useful not only for saddle poi
but also for systems with repellors and spiral points, wh
can be transformed to stable FP’s~sinks! via a certain matrix
Cks ~see below!.
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We now discuss the properties of all possible stabi
matrices according to theirc l t(f) diagrams. To do this it is
sufficient to consider the assignment of the matrices to
classesC 1, C 2, andC 3 as introduced in Eq.~8! and to the
classesAl t . In the following we concentrate on the class
C 1 andC 2 since the argumentation for the classC 3 is analo-
gous to that forC 1. For the same reason we restricted t
examples in Figs. 2–5 to the classesC 1 and C 2. In Figs.
2~c!–5~c! we show the areas in thec l t(f) diagrams where a
crossing ofc l t(f) andx0(f) or x1(f) may occur as gray
shaded boxes. They are derived by simple application
continuity arguments concerningc l t(f). The labelsl t in
the boxes are the labels of the corresponding classAl t of
matrices whose real eigenvectors have azimuthal angle
this range off. Two labels given in brackets indicate th
possibility of either two real eigenvalues with eigenvecto
in this range~sink or source! or complex eigenvalues withou
real eigenvectors of the corresponding matrix~spiral points!.
These two possibilities cannot be distinguished within o
classification scheme of matrices. However, this fact d
not affect the final selection of the minimal stabilising set
matricesCks .

We begin our discussion with stability matricesB with
negative determinants.

Matrices BP$Al 2u l 50 . . . 3% are stability matrices of
saddle points. The stability properties of these FP’s are e
to determine from the correspondingc l t(f) diagrams in
Figs. 3~b! and 5~b!. It is obvious from the monotonicity and
continuity of thec l t(f) curve that they intersect the ‘‘un
stable’’ and the ‘‘stable’’ linesx0(f),x1(f), respectively,
exactly once. The sectors where the corresponding eigen
tors are localized are shaded gray in the corresponding p
diagrams@Figs. 3~c! and 5~c!#.

FP’s with positive JacobianB are a bit more subtle mat
ter. They belong to the classes$Al 1u l 50 . . . 3% and include
sinks and sources as well as spiral points for which the
part of the stability eigenvalues Re(l1). Re(l2) possess the
same signs. Spiral FP’s possess stability matricesB with
eigenvalues Im(l1),Im(l2)Þ0. This implies det(B).0. As
pointed out earlier the classification of the stability matric
with C(fmin ,fmax) andAl t neither specifies the matrix nor it
eigenvalues completely. In particular for stability matric
whose family contains spiral points an additional criterion
needed to analyze their stability since the correspond
c l t(f) functions do not cross the linesx0(f) or x1(f). For
this analysis we suggest the following criterion~whose com-
pleteness we could not prove yet!.

Consider the anglesf t , t51,2, for which c l t8 (f t)51,
i.e.,c l t(f) is tangential toxn(f), and define the distance t
both linesxn(f)

dn5 min
t51,2

uc l t~f t!2f t2npu, n50,1. ~19!

Now the stability of the spiral point is suggested by

d0,d1⇒Re~le!.0, unstable spiral point, ~20!

d0.d1⇒Re~le!,0, stable spiral point ~21!

This implies that for spiral FP’s the linexn(f) which is
closest toc l t(f t) determines the stability and this can b
e
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seen as a generalization of the criterion of the crossing w
xn(f) in the case of real eigenvalues.

It is an interesting property that the stability of matric
Bl 1 of a family $Bl tu l 50 . . . 3,t56% changes withl→ l
12 mod 4, i.e., ifB11 is stable, thenB31 is unstable, ifB21

is stable, thenB41 is unstable and vice versa. If the eige
values are real the eigenvectors are not affected by the
~only their stability changes!. This property is obvious taking
into account that the shift inl corresponds to a shift o
c l t(f) by p, with p also being the shift between the line
x0(f),x1(f). Physically, the shift byp is for any stability
matrix equivalent to a time reversal@which corresponds to a
reversal of the fluxF(x)→2F(x)].

We now come back to the discussion of the stability pro
erties of matricesB possessing a positive determinant.

MatricesBP$Al 1u l 50 . . . 3% describe sinks and source
and spiral points. First we will address the sinks and sour
and second the spiral points. The corresponding cu
c l t(f) crosses one of the linesx0(f) ~sink! or x1(f)
~source! twice. It is obvious but nevertheless important
note that there cannot be more than two crossings, which
also formally be seen from Eq.~12!. Having three or more
cuts with xn(f), n50,1 implies thatc l t(f) has at least
two turning points in any interval@fd ,fu# with fd2fu

5p/2. This means thatLl t
2 (f) has two or more extrema in

@fd ,fu#. Differentiating Ll t
2 (f) @see Eq.~13!# yields @for

the sake of simplicity we omit the superscripts (l t) in the
entries (bi j

( l t))1< i , j <2 of B]

dLl t
2 ~f!

df
52~b21

2 1b11
2 !2 cosf sinf1~b22

2 1b12
2 !2 sinf

3cosf12~cos2 f2 sin2 f!~b21b221b11b12!

5~b22
2 1b12

2 2b21
2 2b11

2 !sin~2f!

12~cos2 f2 sin2 f!~b21b221b11b12!cos~2f!,

~22!

dLl t
2 ~f!

df
50⇔tan~2f!5

b21b221b11b12

b22
2 1b12

2 2b21
2 2b11

2
, ~23!

which has exactly one solution forf in any interval
@fd ,fu# with fd2fu5p/2, i.e., there is only one turning
point in this interval.

~a! The classC 1: As can be read off directly from the
diagrams@Figs. 2~b! and 2~c!#, matrices inC 1ùA21 and
C 1ùA22 are sinks and sources, respectively. One of
eigenvectors is in the interval@fmin ,fmax#, the other one is
located in @p/2,p#. Matrices of the classC 1ùA11 and
C 1ùA31 are either sinks and sources or spiral points. F
real eigenvalues matrices ofC 1ùA11 are sinks, whereas
matrices inC 1ùA31 are sources. The orientation of th
eigenvectors of both stability matrices are within the inter
@fmax,p/2#. Considering the latter case of spiral points, w
can at least state that within one family$Bl tu l 50 . . . 3,t5
61% of matrices eitherB11 is a stable spiral andB31 is an
unstable spiral point or vice versa.

~b! The classC 2: Here more cases are possible. Looki
at the matrices$Bl 1u l 50 . . . 3% of the family $Bl tu l
50 . . . 3,t56% there can be
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~1! no spiral point, but two sinks and two sources~analo-
gous toC 1);

~2! two spiral points~one stable, one unstable!, one sink
and one source~analogous to inC 1); or

~3! four spiral points~two stable, two unstable!.

Which of these cases occur is a question of the variation
c l t(f)2f and of the phasec l t(fmin). If real eigenvalues
occur, the angles of the corresponding eigenvectors
within @p/2,fmax# for matrices inA11 andA31 . The posi-
tion of eigenvectors of stability matrices inA11 andA31 is
not determined within this classification scheme.

To determine the minimal setsSi of matricesCks neces-
sary for stabilization ofall FP’s of a two-dimensional chaoti
dynamical system let us first consider the classesAl tùC i

whose representatives correspond to stable FP’s. We h
fore form pairs (l t,l 8t8) abbreviating the two classesAl t
andA l 8t8 for any C i

C 1:~11,21 ! or ~21,31 !

C 2:~11,21 ! or ~21,31 ! or ~31,01 ! ~24!

C 3:~11,21 ! or ~21,31 !.

When looking for the minimal set of matricesCks necessary
for stabilization one has to take into account that only cert
kinds of FP’s can occur in the systemẋ5F(x), Eq. ~4!,
f t

m

in
ou

v

of

re

re-

n

derived from the original dynamical systemxi 115f(xi). In
two dimensionsf(x) can have saddle points only and th
FP’s of F(x) are therefore either saddle points also or sin

Let us discuss the setSsaddleof matricesCks which stabi-
lize saddle points first. Since the determinant of the stabi
matrix is negative for a saddle point and positive for a
stable sink or spiral point, the corresponding stabilizing m
trix Cks has the formCk2 . Since the saddle points of a
classesC 1, C 2, andC 3 have to be stabilized bySsaddlewe
have to determineSsaddlesuch that any classAl 2 of original
matrices is transferred into at least one element in each o
pairs
(11,21) or ~21,31! or ~31,01!, which is the union of the
pairs of all three classesC 1, C 2, and C 3 in Eq. ~24!. The
transition Table II shows that there are just two possibilit
of minimal sets:Ssaddle5$C02 ,C22% or $C12 ,C32%. Each
of these sets has to be combined with setsSsink that stabilize

the sinks ofẋ5F(x) to yield a possible setS. Since the latter
are already stable, the identity transformationSsink5$C01%
is sufficient. Indeed, it is easy to see that no otherCks is able
to achieve the same: Sinks can occur in bothC 1 andC 3 for
the classesA11 andA21 and inC 2 for the classesA21 and
A31 . We therefore can list these different classes of sin
and setsSsink of matricesCks necessary to stabilize them a
follows:
original classes stable classes sets of stabilisingCks

C 1ùA11 : ~11,21 ! $C01% or $C11%

C 1ùA21 : ~11,21 ! or ~21,31 ! $C01% or $C11 ,C31%

C 2ùA21 : ~11,21 ! or ~21,31 ! $C01% or $C11 ,C31%

C 2ùA31 : ~21,31 ! or ~01,31 ! $C01% or $C11 ,C31%

C 3ùA11 : ~11,21 ! $C01% or $C11%

C 3ùA21 : ~11,21 ! or ~21,31 ! $C01% or $C11 ,C31%.

~25!
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So the smallest set that stabilizes any sink independent o
classesC 1, C 2, andC 3 is Ssink5$C01%. If we now form the
unionsSsaddleøSsink to get a set of matricesCks that stabilize
all FP’s of a two-dimensional fully chaotic dynamical syste
we end up with two ‘‘global’’ minimal sets:

S15$C01 ,C02 ,C22%

and

S25$C01 ,C12 ,C32%. ~26!

There are other sets which also do the job, but they conta
least four matrices and are therefore not minimal. In previ
numerical investigations it was observed@25,26# that the
transformation belonging to the matrixC01 yields a particu-
larly large number of stabilized fixed points. From the abo
discussion this now becomes understandable sinceC01 is
responsible for the stabilization of the sinks in Eq.~5! which
occur in many different classes.
he

at
s

e

Let us remark that the above discussion also inclu
sinks of the original systemf since they become sinks ofF
and can therefore be treated in the same way, i.e., are ‘
bilized’’ using the same minimal setsS1 or S2.

The concept of characterizing FP’s by sets of manifo
which are invariant with respect to the operationsCks can be
extended in a natural way. One can consider manifo
which are composed by not only two subsetsZ1 and Z2 as
above, but of four subsetsZ1 . . . Z4. These subsets are de
fined implicitly by demanding a given ratio of the two com
ponents of the flux. For the linear regime they correspond
four angles$f1 ,f2 ,f3 ,f4%, which are a generalization o
the parameters$fmin ,fmax% in the discussion above. Thi
larger set of parameters leads to a finer partition of the sp
of all 232 matrices, which in turn allows a complete assig
ment of stability properties to the different matrices. T
definition of the family of a given matrix is analogous to th
corresponding definition, Eq.~10!, and reflects the action o
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the group of matrices$Cks%. However, finding the prope
partition is not straightforward and is left to a future inve
tigation.

III. APPLICATIONS

In this section we apply the SD method whose theoret
background has been discussed so far. Furthermore we
discuss several improvements of its original algorithm
implementation to locate the UPO’s@25,26#. With respect to
the detection of the orbits our aim is twofold. First we a
interested in complete sets of UPO’s for higher periods of
above maps and in analyzing them with respect to the di
butions of the corresponding Lyapunov exponents. Sec
we want to demonstrate the suitability of our method
detecting the least unstable orbits up to high periods.
latter is an extension of the work given in Ref.@26#. We
remark that very recently an efficient algorithm for detecti
UPO’s in chaotic systems based on a combination of the
method and a Newton–Raphson-like approach has been
veloped and successfully applied@29#.

A. Finding the fixed points

Concerning the efficient algorithmic implementations
the SD method we face two main problems:

~1! the completeness of the detected set of UPO’s wh
is of conceptual character, and

~2! separating closely neighbored UPO’s which is an is
only for our particular implementation of the SD metho
i.e., characteristic for our numerical approach.

Let us first address the completeness problem. Of co
there is no exact proof of completeness for the detec
UPO’s within the SD method. However, a properly chos
sequence of sets of initial conditions, which cover the ph
space of the dynamical system as neat as possible, can
nificantly lower the probability of missing any UPO’s. Du
to the presence of length scales which differ by many ord
of magnitude induced by the fractal structure of the cor
sponding strange attractor we proceed here as follows.

We introduce a set of gridsGi , i 51,2, . . . of starting
points which are cumulative in the way that the points ofGi
fill gaps on the attractor that are larger than a given size
the union of the preceding gridsG1øG2ø . . . øGi 21. In
the particular case of the Ikeda map~see below! we generate
a sequence of six gridsG1, . . . ,G6 with G1 containing ap-
proximately 4500 points, whileGi , i 52, . . . ,6contain ap-
proximately 1500 points each. The starting points of each
Gi are propagated with the transformed mapsS01 , S02 ,
and S22 , i.e., applying the matricesC01 , C02 , and C22

according to Eq.~1!. The propagation of a particular trajec
tory is stopped at the pointx if d5u f (p)(x)2xu,e, wheree
is the desired resolution of the FP’s. For periodic orbits
the Ikeda map withp514 and 15, e,10210 turned out to
be sufficient to resolve the different cycles. Propagating
starting points of the gridsGi with S01 , S02 , and S22

yields the setsNi ,01 , Ni ,02 , and Ni ,22 , i 51, . . . ,6, re-
spectively, of points which to good accuracy approximate
FP’s of the Ikeda map. The setNi5Ni ,01øNi ,02øNi ,22

contains the FP’s of the map found by propagating the po
of Gi . Then we consider the numberni ,ks of FP’s that ap-
l
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pear in a particularNi ,ks ~and therefore inNi) with (ks)
5(01), (02), (22), but which are not contained in an
otherNj , j , i . If ni 21,ks5ni ,ks50, i.e., no additional FP’s
have been found when propagating two subsequent g
Gi 21 , Gi , the set of FP’s of the transformed systemSks is
considered to be complete and the procedure of construc
subsequent grids is stopped.

The second improvement concerns the separation
neighboring UPO’s. Using however an appropriately defin
distance dxy between two orbits of periodp, xW i

5(x1i ,x2i)
T, yW i5(y1i ,y2i)

T, i 51, . . . ,p:

dxy5 min
k50, . . .
. . . ,p21

(
1< i<p
1< j <2

~xji 2yj ( i 1kmodp)!
2. ~27!

This can be achieved as follows. We consider a set
FP’s that belong to different periodic orbits. The FPs o
tained in the procedure of propagating the transformed s
tems S01 , S02 , and S22 as described above provide a
example for such a set. By forming all possible pairs of a
two FP’s of this set and looking at the resulting distributi
of values ofdxy ~e.g., by plotting alldxy in a logarithmic
scale! one can distinguish three subsets, separated by g
differing by several orders of magnitude~Fig. 6!. The set
with the largest values ofdxy contains all pairs formed with
different orbits, whereas the second and third largest se
composed of pairs of identical orbits. A possible explanat
for the appearance of the gap between the second and
third zone is the following: A trajectory of the transforme
map approaches the FP on a curve, which in the local
still nonlinear neighborhood is close to the least stable
both stable manifolds of the FP. Two trajectories$yi% and
$zi% can therefore evolve toward a FPxo along the same or
opposite directions. The same holds for all other FPs of
orbit f(r )(xo) with the trajectories $f(r )(yi)% and
$f(r )(zi)%, r 51, . . . ,p21. In the case of an antiparallel ap
proach to the FPs of a given cycle, the contributions todxy
are much larger compared to the case of a parallel appro
which finally yields the gap between the second~parallel
approach! and third~antiparallel approach! region in Fig. 6.

FIG. 6. Distribution of the distancesdxy of the orbits of the
Ikeda map for periodp515 of the setN1. The abscissa of the figure
covers the 16 076 pairs of FP’s inN1.
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If the first and the second zone happen to merge, the a
racy of the FP’s is not sufficient to distinguish different o
bits and has to be refined by further propagation with
corresponding transformed maps. What is more, this dist
tion can be used to derive an estimate for the absolute a
racy of the FPs derived by propagating the appropria
transformed system: The maximal separation of two po
belonging to the same cycle is given by the square root of
value of dxy at the upper edge of the lowest band in t
distribution of values ofdxy .

With the above method we selected exactly one poin
each periodic orbit we found. The other points are obtain
by simply propagating the selected point with the origin
map.

B. Complete sets of orbits and Lyapunov distributions

In the following we first focus on the Ikeda map@28#.
It is given by xn115a1b(xn coswn2yn sinwn), yn11

5b(xn sinwn1yn coswn), where wn5g2@d/(11xn
21yn

2)#.
The attractor to be investigated appears fora51.0, b
50.9, g50.4, andd56.0. For the Ikeda map the period
p51,2, . . . ,13have already been investigated in Ref.@25#.
In order to indicate the applicability of the previously di
cussed algorithmic implementation of the SD method bey
those periods we calculate complete sets of orbits fop
514,15.
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A rough hint towards the completeness of the result is
convergence of the corresponding topological entropyh
5 limp→`hp , with hp5 ln n(p)/p, n(p) being the number of
FPs of all cycles of periodp ~see Table III!. h seems to be
converged fairly well to a constant value. Our sets of orb
for the Ikeda map, together with the corresponding res
for the Hénon map, allow us to study the distributions of th
Lyapunov exponents of the UPO’s for the two different sy
tems~see below!.

Before entering into this discussion we comment on so
observations made by applying the SD method to the Ik
map. As explained in Sec. II B, each point of a UPO is s
bilized by two matrices, which both have either positive
negative determinant. Therefore, we can group the point
one UPO of periodp into the sets

TABLE III. The number of prime cycles with periodp, the total
number of cycle points of orderp, and the topological entropyhp

for Ikeda map, periodsp512, . . .,15.

Periodp 12 13 14 15

No. of prime cycles 110 194 317 566
No. of fixed points 1384 2523 4512 8518

Topol. entropy 0.603 0.603 0.601 0.603
S1~p!:sinks, stabilized by either C01 , C11 , C21 , or C31 , ~28!

S2~p!:saddles, stabilized by eitherC02 , C12 , C22 , or C32 . ~29!
by
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We found the surprising result that for all periodsp51 –15
both setsS1(p) and S2(p) contain the same number o
points, uS1(p)u and uS2(p)u, respectively. The values ar
uS6(p)u51,2,4,8,11,26,36,64,121,242,419,692,1262, a
2256 and 4259 forp51 – 15. Index theory@31# suggests tha
the equalityuS1u5uS2u is a general law. This implies a sym
metry relation between the orbits of the map: Each orbit w
a positive determinant of its stability matrix is related
exactly one orbit with negative determinant. In Sec. III, w
will seek the most stable orbits of the Ikeda map for high
periods and we will find that a similar pairing of orbits, i.e
two orbits, one inS1 and one inS2 , have nearly the sam
Lyapunov exponent. For all detected UPO’s we calculate
Lyapunov exponentLorb5 log(uru)/p, wherer is the largest
eigenvalue of the matrixM5M p• . . . •M2•M1.

Figure 7 shows the normalized distributionsD(L) of
Lyapunov exponentsL of all orbits of orderp524, . . . ,27
for the Hénon map @22# given by xn1151.42xn

2

10.3yn , yn115xn , and for p512, . . . ,15 of theIkeda
map ~primitive orbits only!. For both maps the Lyapuno
exponents form a band and the distributions show a m
and more pronounced peak asp increases. The peak of th
distribution appears aroundL50.5 for the He´non and
aroundL50.68 for the Ikeda map. Around this peak, th
d

h

r

e

re

distribution is expected generally to be well approximated
a Gaussian@12,30#. However, globally the distributions o
both maps clearly deviate from Gaussian behavior in so
respects.

~i! Unlike symmetric distributions, both distributions ex
hibit an enhancement for small values of the Lyapunov
ponent. This indicates that there are correlations within th
orbits.

~ii ! A second feature is the occurrence of peaks in
main bulk of the distribution. A characteristic peak of th
Hénon map appears atL50.551 and a similar spike is vis
ible for low values atL50.435.

Probably the Lyapunov distribution for the cycles of th
Ikeda map displays similar features, though the numbe
cycles for periodp515 is not enough to allow for a suffi
cient resolution of the distribution.

These features show that the Lyapunov distributions c
tain interesting information on the systems dynamics.

C. Stability ordering of cycles

Since the SD method is, by construction, changing
stability properties of a dynamical system, it is not surprisi
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that the value of the tuning parameterl is of relevance to the
magnitude of the Lyapunov exponentsLorb

( j ) to be detected.
The critical parameterlks,i of a pointxi of a cycle stabilized
with Cks is defined as the largest value ofl for which both
eigenvalues of the transformed stability matrixTSks

in Eq.
~2! have an absolute value less than unity, which marks
transition from instability to stability.

As introduced in Ref.@26#, an approximately monotonou
relation betweenLorb

( j ) and the critical valuelks,i
( j ) can be ob-

served. For the orbits of the He´non map, which are stabilize
by a specificCks matrix, this monotonous relation can b
clearly seen. However, when examining other maps, e.g.
Ikeda map, one finds that this relation is obeyed less stric
However, a slightly different concept of ordering does t
job: We consider all pointsxi

( j ) , i 51 . . .p of an orbit j of
given periodp, which in general are stabilized by differen
Cks matrices with different criticallks,i

( j ) values. In contrast
to the approach chosen in Ref.@26# we now allow all eight
Cks matrices to be used as stabilizing transformations.
explained in Sec. II B, each point of the orbitj is stabilized
by two matricesCks , Ck8s8 , with a particularlks,i

( j ) . To
each orbit of periodp there belongs a set of two, three,
four Cks matrices stabilizing different cycle points and a s
of 2n valueslks,i

( j ) . Now we ask for the largestlc out of this
set and call it thelorb

( j ) of the corresponding orbitj. The
corresponding plot for the Ikeda map is presented in Fig
and shows a sufficient ordering of the stability coefficients
the detected UPOs with respect to the corresponding cri

FIG. 7. Normalized distributions of the Lyapunov exponen
~prime cycles only! of the Ikeda and He´non maps for various.
e

he
y.

s

t

8
f
al

valueslorb
( j ) . The area in each subfigure which is shaded g

indicates the approximate position of the pointsLorb
( j ) (lorb

( j ) )
for period p515. Obviously the distributions become in
creasingly flatter with increasingp, which corresponds to a
better stability ordering of the respective periodic orbits. T
allows us to calculate the least unstable orbits of a map
systematic way. We decrease the value ofl used in Eq.~1!
and register the stabilized points one by one. The main
ference to the procedure in Ref.@26# is that we now have to
consider the set of allCks matrices to find theL ( j ) as the
largestlks,i

( j ) of all points r i of an orbit. To implement these
ideas, we construct a successive number of cumulative g
G1 ,G2 ,G3 , . . . leading to an increasingly finer covering
the attractor as described in Sec. III A. For our investigatio
of the Hénon and Ikeda map we used ten gridsG1 , . . . ,G10
each with about 250 points. Then we perform the followi
steps~starting withl50.8 andi 51).

~1! Begin with an initial value ofl and a gridGi of
points. PropagateGi eight times with the stabilized system
according to Eq.~1! for fixed l, using a differentCks ,k
50, . . . ,3, s56 each time.

~2! If step ~1! does not yield the desired number of orbit
replacel⇒r •l, r'0.8, and perform step~1! again.

~3! Replacegi→gi 11 , l→r •l and go to step~1!.
The procedure converges if the set of theN most stable

cycles resulting from the gridHi5G1øG2ø . . . øGi re-
mains the same compared to the set obtained from the
Hi 115G1øG2ø . . . øGi 11. As a result of this procedure
we get a set ofN orbits for each grid.

FIG. 8. Distribution of the Lyapunov exponents of the stabiliz
orbits as a function of the critical stabilizing parameterlorb

( j ) for the
Ikeda map, periodsp510–15. The areas shaded gray show t
approximate range of the distribution forp515.
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For the two maps studied here we can clearly obse
convergence. In Fig. 9 the Lyapunov exponents for the
most stable orbits of each period are shown for both
Ikeda and He´non map for periods p51 –36. These
Lyapunov exponents correspond to the lower edge of
distribution of Lyapunov exponents as given in Fig. 7.

Two features in Fig. 9 are remarkable.
~i! The Lyapunov exponents of the least unstable orbits

a certain lengthp of both the He´non and Ikeda map ar
approximately in the same range. This is valid for all perio
p considered. They both decrease with increasing per
This corresponds to a shift of the lower edge of t
Lyapunov distribution towards decreasing values ofL with
increasing period. The inset in Fig. 9 shows the sa
Lyapunov exponents in a log–log plot. The mean of the to
distribution, i.e, of all UPO’s for a certain period, is th
average Lyapunov exponentL̄ of the maps which is approxi
mately constant. Therefore the linear decrease in Fig. 9
plies that the spreadingW(p) of the tail of the distribution of
the Lyapunov exponents, as displayed in Fig. 7 for periodp,
grows approximately as an algebraic function of the peri
i.e., W(p)}ph, h.0.

~ii ! Both maps show exceptionally small Lyapunov exp
nents ~e.g., periodsp513,16,18 andp526,28,30 for the
Hénon map, periodsp519,21 andp524,27,30 for the Ikeda
map!. These orbits seem to approach the main part of
distribution with increasing period.

IV. SUMMARY

This paper has two main objectives. First it present
novel approach toward a better understanding of the
method, thereby establishing a geometric interpretation
classification, and second it provides results of applicati
of the SD method to two dimensional maps.

In the first part we investigated the stability transform
tions as proposed in Ref.@25# by introducing two classifica-
tions of the corresponding stability matrices of all FP
These are based on properties that change in a regular
well-defined way when the stability transformations are
plied. The first classification is with respect to manifol
which are invariant to the stability transformations. The s

FIG. 9. The Lyapunov exponents of the ten least unstable or
of Ikeda and He´non map forp51 . . . 36. The inset shows the sam
distribution on a log–log scale.
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ond one mirrors the change of the azimuthal angle of the
in the neighborhood of the FP’s. According to these clas
fications of the stability matrices we can assign to each se
corresponding FP’s a certain dynamical behavior related
their stability properties. This provides new insights into t
mathematical group structure which is impressed by the
bility transformations onto the stability matrices and FP’s.
particular this allows us to determine the minimal set
transformations necessary to detect all FP’s of a given t
dimensional system. We thereby learned how simple glo
operations on the dynamical system change the stab
properties of fixed points. This point of view has the adva
tage that it does not rely on the analytic expressions for
genvalues and is therefore more suited for the extensio
the method to higher dimensions.

The second part of the present work deals with the al
rithmic implementation of the SD method, its application
the finding of UPO’s in strange attractors, as well as
evaluation and interpretation of the achieved results. In p
ticlar we demonstrate that even longer cycles can be
tected. This is achieved by using a special sequence of g
of initial points for the propagation and by an improved tec
nique to separate distinct UPO’s. Thus it becomes clear
the maximal period of orbits to be detected by the S
method is limited by the machine precision, not by failure
the method itself. As a result of our investigations of t
Ikeda map we get distributions of Lyapunov expone
which show characteristic deviations from the first-order a
proximation by a Gaussian distribution. The distributions
the Hénon map show similar, but distinct characteristic
Analyzing the UPO’s of the Ikeda map for the periodsp
51 –15, with respect to their stability in all different tran
formed systems, suggests an underlying symmetry rela
for this map which implies a correlation between distin
UPO’s of the same period. As a second numerical invest
tion we search for the ten periodic orbits with the small
Lyapunov exponents for the Ikeda and He´non maps. Since
these orbits are the least unstable ones, it is possible to
tend the investigation up to periodp536 for both maps. The
distributions of the cycles as a function of the period show
remarkably regular overall tendency with characteristic
viations for both maps. What is more, this part of t
Lyapunov spectrum covers the section of small values of
Lyapunov distributions which differs most from the Gaus
ian approximation and might therefore provide valuable
formation on the dynamical systems.

Finally we remark on very recent developments conce
ing the detection of UPO’s. In Ref.@29# the SD method has
been combined with the Newton–Raphson method in or
to speed up convergence in the linear neighborhood of
FP. Such hybrid algorithms are very desirable since th
perform very efficiently, while preserving the desired glob
character of the SD method.
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